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We prove that a ballean is cellular if and only if its asymptotic Gromov dimension is 0.
We construct also a universal countable metrizable ballean and show that every separable
non-Archimedean metric space is asymptotically embeddable into a Hilbert space.

Î. È. Ïðîòàñîâà. Ñîòîâûå áîëåàíû // Ìàòåìàòè÷íi Ñòóäi¨. � 2006. � Ò.25, �1. � C.3�9.

Äîêàçàíî, ÷òî áîëëåàí ÿâëÿåòñÿ ñîòîâûì òîãäà è òîëüêî òîãäà, êîãäà åãî àñèìïòîòè-
÷åñêàÿ ðàçìåðíîñòü ïî Ãðîìîâó ðàâíà 0. Ïîñòðîåí óíèâåðñàëüíûé ñ÷¼òíûé ìåòðèçóåìûé
áîëëåàí è äîêàçàíî, ÷òî êàæäîå ñåïàðàáåëüíîå íåàðõèìåäîâî ìåòðè÷åñêîå ïðîñòðàíèñòâî
àñèìòîòè÷åñêè âëîæèìî â ãèëüáåðòîâî ïðîñòðàíñòâî.

1. Ball structures and balleans. A ball structure is a triple B = (X, P, B), where X, P
are nonempty sets and, for any x ∈ X and α ∈ P , B(x, α) is a subset of X which is called

the ball of radius α around x. It is supposed that x ∈ B(x, α) for all x ∈ X, α ∈ P . The set

X is called the support of B, P is called the set of radiuses.

Given any x ∈ X, A ⊆ X, α ∈ P , we put

B∗(x, α) = {y ∈ X : x ∈ B(y, α)}, B(A, α) =
⋃
a∈A

B(a, α).

A ball structure B = (X, P, B) is called
• lower symmetric if, for any α, β ∈ P , there exist α′, β ′ ∈ P such that, for every x ∈ X,

B∗(x, α′) ⊆ B(x, α), B(x, β ′) ⊆ B∗(x, β);

• upper symmetric if, for any α, β ∈ P , there exist α′, β ′ ∈ P such that, for every x ∈ X,

B(x, α) ⊆ B∗(x, α′), B∗(x, β) ⊆ B(x, β ′);

• lower multiplicative if, for any α, β ∈ P , there exists γ ∈ P such that, for every x ∈ X,

B(B(x, γ), γ) ⊆ B(x, α) ∩ B(x, β);

• upper multiplicative if, for any α, β ∈ P , there exists γ ∈ P such that, for every x ∈ X,

B(B(x, α), β) ⊆ B(x, γ).
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Let B = (X, P, B) be a lower symmetric, lower multiplicative ball structure. Then the

family { ⋃
x∈X

B(x, α) × B(x, α) : α ∈ P

}

is a base of entourages for some (uniquely determined) uniformity on X. On the other hand,

if U ⊆ X×X is a uniformity on X, then the ball structure (X,U , B) is lower symmetric and

lower multiplicative, where B(x, U) = {y ∈ X : (x, y) ∈ U}. Thus, the lower symmetric and

lower multiplicative ball structures can be identified with the uniform topological spaces.

A ball structure is said to be a ballean if it is upper symmetric and upper multiplicative.

The balleans arouse independently in coarse geometry [8] under name coarse structure and

in combinatorics [6]. For good motivation to study the balleans related to metric spaces see

the survey [1].

Let B1 = (X1, P1, B1), B2 = (X2, P2, B2) be balleans. A mapping f : X1 → X2 is called a

≺-mapping if, for every α ∈ P1, there exists β ∈ P2 such that, for every x ∈ X1,

f
(
B1(x, α)

) ⊆ B2(f(x), β).

By the definition, ≺-mappings can be considered as the asymptotic counterparts of the

uniformly continuous mappings between the uniform topological space.

If f : X1 → X2 is a bijection such that f and f−1 are the ≺-mappings, we say that the

balleans B1 and B2 are asymorphic. If X1 = X2 and the identity mapping id : X1 → X2 is a

≺-mapping, we write B1 ≺ B2. If B1 ≺ B2 and B2 ≺ B1, we write B1 = B2.

A pair (f1, f2) of ≺-mappings f1 : X1 → X2, f2 : X2 → X1 is called a quasi-asymorphism

between the balleans B1 = (X1, P1, B1) and B2 = (X2, P2, B2) if there exist α ∈ P1, β ∈ P2

such that, for all x ∈ X1, y ∈ X2,

f2f1(x) ∈ B1(x, α), f1f2(y) ∈ B2(y, β).

The notion of quasi-asymorphism is a generation of the notion of course equivalence of

metric spaces [1].

2. Cellularity. Given any ballean B = (X, P, B), x ∈ X, y ∈ X and α ∈ P , we say that x, y
are α-path connected if there exists a sequence x0, x1, ..., xn, x0 = x, xn = y such that

xi ∈ B(xi+1, α), xi+1 ∈ B(xi, α)

for every i ∈ {0, 1, ..., n− 1}. For any x ∈ X and α ∈ P , we put

B2(x, α) = {y ∈ X : x, y are α-path connected}.

The ballean B2 = (X, P, B2) is called the cellularization of B. A ballean B is called cellular

if B = B2. These notions were introduced in [7]. Every ballean which is quasi-asymorphic

to some cellular ballean is cellular.

Example 1. Let X be a set and let P be a partition of X. For x, y ∈ X, we say that

y ∈ B(x, 1) if and only if x, y are in the same cell of the partition P. By B(X,P) we denote
the ballean (X, {1}, B) and call it the partition ballean. Clearly, every partition ballean is

cellular.



Let (X, d) be a metric space, R
+ = {r ∈ R : r ≥ 0}. For any x ∈ X and r ∈ R

+, denote

Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.

By B(X, d) we denote the ballean (X, R+, Bd) and say that B(X, d) is determined by

(X, d). A ballean B is called metrizable if B is asymorphic to B(X, d) for some metric space

(X, d). For criterion of metrizability see [7] or [6, Theorem 9.1]. Using this criterion it is easy

to show that a ballean quasi-isomorphic to some metrizable ballean is metrizable.

Example 2. A metric d on a set X is called non-Archimedean (or ultrametric) if

d(x, y) ≤ max{d(x, z), d(y, z)}

for all x, y, z ∈ X. If (X, d) is a non-Archimedean metric space, then the ballean B(X, d) is
cellular. By [6, Theorem 9.3], every metrizable cellular ballean is asymorphic to B(X, d) for
an appropriate non-Archimedean metric space (X, d).

Example 3. Let X be a set and let ϕ be a filter on X. For any x ∈ X, F ∈ ϕ, we put

B(x, F ) =

{
X \ F, if x /∈ F ;
{x}, if x ∈ F ;

denote by B(X, ϕ) the ballean (X, ϕ, B) and say that B(X, ϕ) is a filter ballean. Since

B2(x, F ) = B(x, F ) for all x ∈ X, F ∈ ϕ, every filter ballean is cellular. A ballean B =
(X, P, B) is called pseudodiscrete if, for every α ∈ P , there exists a bounded subset Y ⊆ X
such that B(x, α) = {x} for every x ∈ X \ Y . A subset Y ⊆ X is called bounded if

Y ⊆ B(x, α) for some x ∈ X, α ∈ P . A ballean B is pseudodiscrete if and only if B is

asymorphic to some filter ballean. Hence, every pseudodiscrete ballean is cellular.

Example 4. Let G be an infinite group with the identity e, k be an infinite cardinal such

that k ≤ |G|. We denote by F(G, k) the family {F ⊂ G : |F | < k, e ∈ F} and, for any

g ∈ G, F ∈ F(G, k), put

Bl(g, F ) = gF, Br(g, F ) = Fg.

Thus, we get two balleans

Bl(G, k) = (G,F(G, k), Bl), Br(G, k) = (G,F(G, k), Br).

Clearly, the mapping x 7→ x−1 is an asymorphism between Bl(G, k) and Br(G, k).

A ballean Bl(G, k) is cellular if and only if either k > ℵ0 or k = ℵ0 and every finite subset

of G is contained in some finite subgroup.

Let B = (X, P, B) be a ballean. A family F of subsets of X is called uniformly bounded

if there exists α ∈ P such that, for any F ∈ F and x ∈ F , we have F ⊆ B(x, α).

Let {Bλ = (X, Pλ, Bλ) : λ ∈ Λ} be a family of balleans with common support X. We

suppose that, for any λ1, λ2 ∈ Λ, there exists λ ∈ Λ such that Bλ1 ≺ Bλ, Bλ2 ≺ Bλ. For any

λ ∈ Λ, we choose a copy P ′
λ = fλ(Pλ) of Pλ such that the family {P ′

λ : λ ∈ Λ} is disjoint, and

put P =
⋃

λ∈Λ Pλ. For all x ∈ X, β ∈ P, β ∈ P ′
λ, we put B(x, β) = Bλ(x, f−1(β)). A ballean

B = (X, P, B) is called an inductive limit of the family {Bλ : λ ∈ Λ}. Clearly, Bλ ≺ B for

every λ ∈ Λ, and B is the smallest ballean on X with this property.



Theorem 1. For every ballean B = (X, P, B), the following statements are equivalent:

(i) B is cellular;

(ii) for every uniformly bounded in B family F of subsets of X and every α ∈ P , the family

F2(α) = {B2(F, α) : F ∈ F} is uniformly bounded in B;
(iii) B is an inductive limit of some family {Bλ : λ ∈ Λ} of partition balleans.

Proof. (i)⇒(ii). Since B is cellular, we may suppose that B2(x, λ) = B(x, λ) for all x ∈
X, λ ∈ P . Choose β ∈ P such that F ⊆ B(x, β) for all F ∈ F and x ∈ F . Choose γ ∈ P
such that B(B(x, β), α) ⊆ B(x, γ) for every x ∈ X. Then F ⊆ B(x, γ) = B2(x, γ) for all

F ∈ F and x ∈ F .

(ii)⇒(iii). For all α ∈ P and x, y ∈ X, we put x ∼α y if and only if y ∈ B2(x, α). Denote
by Fα the partition of X determined by ∼α, and by Bα the partition ballean B(X,Fα). Let
B′ be an inductive limit of the family {Bα : α ∈ P}. Since Fα is uniformly bounded, we have

Bα ≺ B for every α ∈ P , so B′ ≺ B. On the other hand B(x, α) ≺ B2(x, α) for all x ∈ X
and α ∈ P , so B ≺ B′.

(iii)⇒(i). Let B be an inductive limit of the family {Bλ(X,Pλ) : λ ∈ Λ} of partition

balleans. Since Bλ(X,Pλ) = (X, {λ}, Bλ) and B2(x, λ) = B2
λ (x, λ) = Bλ(x, λ) = B(x, λ), B

is cellular.

3. Cellularity and dimension. Let B = (X, P, B) be a ballean, F be a family of subsets

of X, α ∈ P . We say that F is α-disjoint if every ball B(x, α) intersects at most one

member of the family F . Given n ∈ N ∪ {0}, we say that asdimB ≤ n if, for every α ∈ P ,

there exists a uniformly bounded covering F = F0 ∪ F1 ∪ ... ∪ Fn of X such that every

family Fi, i ∈ {0, 1, ..., n} is α-disjoint. In this case we denote by asdimB the minimal

number m such that asdimB ≤ m. If the statement asdimB ≤ n does not hold for every

n ∈ N, we put asdimB = ∞. We omit a routine verification of invariance of asdim under

quasi-asymorphisms.

This definition of asdim is a direct generalization of the Gromov dimension of metric

spaces, see the survey [1].

Theorem 2. A ballean B = (X, P, B) is cellular if and only if asdimB = 0.

Proof. Assume that B is cellular and B2(x, α) = B(x, α) for all x ∈ X, α ∈ P . Given an

arbitrary α ∈ P , denote by Fα the covering of X determined by the equivalence ∼α from the

proof of Theorem 1. If F ∈ Fα and x ∈ F , then B2(x, α) = F so Fα is α-disjoint. Clearly,
Fα is uniformly bounded, so asdimB = 0.

Assume that asdimB = 0. Given an arbitrary α ∈ P , we take an α-disjoint uniformly

bounded covering Fα of X. Let F ∈ Fα and x ∈ F . We show that B2(F, α) = F .

Suppose the contrary and choose y ∈ F, z ∈ B2(F, α) \ F . Then there exists a sequence

x0, x1, ..., xk, xk+1, ..., xn in X such that x0 = y, xn = z, xi ∈ B(xi+1, α), i ∈ {0, ..., n−1} and
xk ∈ F, xk+1 ∈ B(xk, α) \ F . Then the ball B(xk, α) intersects at least two members of the

familyFα. Since Fα is uniformly bounded, there exists β ∈ P such that F ⊆ B(y, β) for every
y ∈ F . Given any x ∈ X we take F ∈ Fα such that x ∈ F . Then B2(x, α) = F ⊆ B(x, β)
so B = B2.

4. Universal balleans. Let B = (X, P, B) be a ballean, Y ⊆ X. We say that the ballean

BY = (Y, P, BY ), where BY (y, α) = B(y, α) ∩ Y , is a subballean of B.



Let K be a class (with respect to asymorphisms) of balleans. A ballean B ∈ K is called

universal if every ballean from K is asymorphic to some subballean of B. By [2], there exists

a metric space M0 (which is an asymptotic counterpart of Cantor set) such that the metric

ballean determined by M0 is universal in the class K0 of balleans defined as follows: a ballean

B = (X, P, B) belongs to K0 if and only if B is countable metrizable cellular and, for every

r > 0, there exists a natural number c(r) with |B(x, r)| < c(r) for every x ∈ X.

Now we are going to construct a ballean which is universal in the class of all countable

metrizable cellular balleans.

Let {Zn : n ∈ ω} be a family of nonempty sets. For every n ∈ ω, we fix some element

en ∈ Zn and say that the family {(Zn, en) : n ∈ ω} is pointed. Let us consider the direct

product Z =
⊗

n∈ω(Zn, en). Every element z ∈ Z is a sequence (zn)n∈ω such that zn ∈
Zn, n ∈ ω and zn = en for all but finitely many n ∈ ω. For every n ∈ ω, we put zn = prnz
and define a metric ρ on Z by the rule: ρ(z, z) = 0 and if z 6= z′ let ρ(z, z′) = min{n ∈ ω :
priz = priz

′ for every i ≥ n}. Clearly, (Z, ρ) is a non-Archimedean metric space, so the

ballean B(Z, ρ) is cellular.

Theorem 3. Let {(Z, en) : n ∈ ω} be a pointed family such that |Zn| = ℵ0 for every

n ∈ ω, Z =
⊗

n∈ω(Zn, en). Then every countable cellular metrizable ballean B = (X, P, B)
is asymorphic to some subballean of B(Z, ρ).

Proof. By Theorem 1, there exists a family {Pn : n ∈ ω} of partitions of X such that B is an

inductive limit of the family of partition balleans {B(Pn) : n ∈ ω} and every partition Pk+1

is an enlargement of Pn+1, i.e. every cell of Pn+1 is union of the cell of Pn. For every n ∈ ω,
we define an equivalence ∼n on Z by the rule: z ∼n z′ if and only if ρ(z, z′) ≤ n + 1. Every
equivalence ∼n defines some partition Rn of Z. Clearly, every cell of Rn is countable and

every cell of Rn+1 is a union of countable many cells of Rn. Therefore it suffices to define

an injective mapping f : X → Z such that, for all n ∈ ω and x, y ∈ X, we have x, y are in

the same cell of Pn if and only if f(x), f(y) are in the same cell of Rn.

We fix some element x0 ∈ X and, for every n ∈ ω, denote by Xn the cell of Pn containing

x0. We denote by Yn the cell of Rn containing the element e = (en)n∈ω. Let f0 : X0 → Y0 be

some injective mapping. Assume that we have defined the sequence f0, f1, ..., fn of mappings

fi : Xi → Yi such that fi+1 is an extension of fi and, for every i ∈ {0, 1, ..., n}, x, y ∈ Xn

are in the same cell of Pi if and only if f(x), f(y) are in the same cell of Ri. Since every

cell of Rn is countable and every cell of Rn+1 is a union of countably many cells of Rn, we

can extend fn to fn+1 : Xn+1 → Yn+1 with above property. After ω steps we define f as an

inductive limit of the family {fn : n ∈ ω}.

Remark 1. Let {(Zn, en) : n ∈ ω} be a pointed family of finite sets such that |Zn| > 1 for

every n ∈ ω, Z =
⊗

n∈ω(Zn, en). It can be shown that the metric ballean B(Z, ρ) is universal
in the class K0 determined above.

Applying Lemma 10.8 from [6], we get a family of cardinality 2ℵ0 of pairwise non-

asymorphic universal balleans in K0.

Remark 2. It is natural to ask if there exists a universal ballean in the class of all countable

cellular balleans. It is well-known that there exist 2c pairwise non-equivalent ultrafilters on a

countable set. Using Example 3, we get a family of cardinality 2c of pairwise non-asymorphic

countable cellular balleans. Since a family of all subballeans of a countable ballean is of

cardinality c, we get a negative answer to this question.



Theorem 4. For every countable cellular metrizable ballean B, there exists a subspace Y
of Hilbert space `2 such that B is asymorphic to the metric ballean determined by Y .

Proof. In view of Theorem 3 it suffices to find Y for the ballean of metric space (Z, ρ) from
Theorem 3. Let d be a standard metric on `2 and, for all x ∈ `2, r ∈ R

n, let B(x, r) be the

corresponding ball. We can construct inductively an increasing sequence (rn)n∈ω, r0 = 1 of

natural numbers and, for every n ∈ ω, a sequence (xnm)m∈ω, xn0 = 0 of elements of `2 such

that

(i) B(xnm, rn) ⊂ B(0, rn+1) for all n, m ∈ ω;

(ii) d(xnm, xnk) > 2rn + n for all n, m, k ∈ ω, m 6= k.

Then we fix some countable subset Y0 ⊂ B(0, r0) and define inductively a chain Y0 ⊂
Y1 ⊂ ... of subsets of `2 by the rule

Yn+1 =
⋃
m∈ω

(xnm + Yn),

and put Y =
⋃

n∈ω Yn. By the construction, the ballean B(Y, d) is cellular. To show that

B(Y, d) is asymorphic to B(Z, ρ) we may use the arguments from the proof of Theorem 3.

Let (X1, d1), (X2, d2) be metric spaces. We say that a mapping f : (X1, d1) → (X2, d2)
is an asymorphic embedding (or uniform embedding in the terminology of [4]) if, for every

R > 0, there exists S > 0 such that

d1(x1, x2) ≤ R ⇒ d2(f(x1), f(x2)) ≤ S,

d2(f(x1), f(x2)) ≤ R ⇒ d1(x1, x2) ≤ S.

In [3] Gromov has drawn attention to the problem of asymptotic embedding of separable

metric space into Hilbert space. The mainstream of this problem is in asymptotic embedding

of Cayley graphs of finitely generated groups into Hilbert space, for the references see [4].

Recently, Higson constructed a counterexample to Gromov's problem (see [8, Proposition

11.29] or [9]).

Theorem 5. Every separable non-Archimedean metric space is asymptotically embeddable

into the Hilbert space.

Proof. In view of Theorem 4 it suffices to show that every separable metric space (X, d) is
asymptotically embeddable into some countable metric space. Let Y be a countable dense

subset of X. For every x ∈ X, we take an arbitrary y ∈ Y such that d(x, y) ≤ 1 and put

f(x) = Y . Clearly, f is an asymptotic embedding.

Remark 3. Following [1], we say that a metric space (X, d) is of bounded geometry if there

exists r > 0 such that, for every n ∈ N, there exists c(n) ∈ N such that every r-discrete
subset in every ball B(x, n) is of cardinality ≤ c(n). Let Y be a maximal r-discrete subset

of X. For every x ∈ X, we take an arbitrary y ∈ Y such that d(x, y) ≤ 2 and put f(x) = y.
Clearly, Y is countable and f is an asymptotic embedding. If X is non-Archimedean, then Y
belongs toK0. Hence, every cellular metrizable ballean of bounded geometry is asymptotically

embeddable into every universal ballean from K0.
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