On some cardinal invariants of hyperspaces

Author
R.B.Beshimov
Department of Algebra and Analysis, V. I. Romanovsky Institute of Mathematics, Uzbek Academy of Sciences,
Abstract
We investigate relationships between some cardinal invariants of a $T_1$-space $X$ and its hyperspace $\exp(X)$ of all non-empty closed subsets of $X$, endowed with the Vietoris topology. We shall prove that hyperspace construction $\exp$ preserves $\pi$-weight and calibers. We compare $\pi$-characters of various hyperspace constructions: $\exp_n$, $\exp_\omega$, $\exp_c$, $\exp$.
Keywords
cardinal invariant, hyperspace, Vietoris topology
DOI
doi:10.30970/ms.24.2.197-202
Reference
1. Архангельский А.В., Пономарев В.И. О диадических бикомпактах, ДАН СССР 182 (1968), № 5, 993-996.

2. Engelking R. General Topology, Heldermann Verlag, Berlin, 1989.

3. Федорчук В.В., Филиппов В.В. Общая топология. Основные конструкции.-- М.: МГУ, 1988.-- 252~с.

4. Fedorchuk V.V., Todorcevic S. Cellularity of covariant functors. Topology and its Appl., 76 (1997), 125-150.

5. Jech T.J. Lectures in Set-Theory with Particular Emphasis on the Method of Forcing. Berlin. 1971.

6. Шанин Н.А. О произведении топологических пространств, Труды Мат. Инст. им. В. А. Стеклова АН СССР, 24 (1948), 1--112.

7. Todorcevic S. Remarks on cellularity in products. Compositio Math., 57 (1986), 357-372.

Pages
197-202
Volume
24
Issue
2
Year
2005
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue