Shreier graphs of iterated monodromy groups of sub-hyperbolic quadratic polynomials (in Ukrainian) |
|
| Author |
bond@mail.univ.kiev.ua
Taras Shevchenko National University of Kyiv
|
| Abstract |
We study Shreier graphs of iterated monodromy groups of
sub"=hyperbolic quadratic polynomials. The substitutional
rules for constructing Shreier graphs on levels are given. An
efficient method is proposed for calculating the orbital
contracting coefficient of the groups as $\lambda^{-1}$, where
$\lambda$ is the Perron number of some nonnegative integral
matrix. An efficient method is given for finding the growth of
diameters of Shreier graphs on levels. Finally, we give the
boundaries, where the growth degrees of orbital Shreier graphs are
located.
The first examples of groups which act on a binary tree and which
have the orbital Shreier graphs of growth degree $\frac{\log
2}{\log\lambda}$ where $\lambda$ is irrational number, are
indicated. The first example of a group with orbital contracting
coefficient (and thus general contracting coefficient) that does
not determine the growth of diameters and growth of orbital
Shreier graphs is constructed.
|
| Keywords |
Shreier graph, iterated monodromy group, sub-hyperbolic polynomial
|
| DOI |
doi:10.30970/ms.22.2.159-175
|
Reference |
1. Островский А.~М. Решение уравнений и систем уравнений.-- Москва: Изд. иностр. лит., 1963. -- 219~с.
2. Гантмахер Ф.~Р. Теория матриц.-- Москва: Наука, 1966. -- 576 с. 3. Валеев К.~Г. Расщепление спектра матриц.-- Киев: Вища Школа, 1986. -- 269 с. 4. Гайдуш И.~В. Системы с дискретным временем.-- Минск: Ин-т мат. НАН Беларуси, 2001. 5. Bartholdi L. Counting path in graphs // Enseignement Math.-- 1999.-- V.45.-- P.83--131. 6. Bartholdi L., Ceccherini-Silberstein T.~G. Growth series and random walks on some hyperbolic graphs.-- Preprint, 2001. -- 22 p. 7. Bartholdi L., Grigorchuk R. On the spectrum of Hecke type operators related to some fractal groups. Proc. of the Steklov Institute of Mathematics.-- 2000.-- V.231.-- P.5--45. 8. Bartholdi L., Nekrashevych V. Iterated monodromy groups of quadratic polynomials.-- Preprint, 2003. 9. Gaubert S., Gunawardena J. The Perron-Frobenius theorem for homogeneous, monotone functions.-- Preprint, 2003.-- 20 p. 10. Grigorchuk R., \.Zuk A. On the asymptotic spectrum of random walks on infinite families of graphs. In M.~Picardello and W.~Woess, editors, Proceedings of the Conference ``Random Walks and Discrete Potential Theory'', (Cortona), № 22 in Symposia Mathematica, p. 188--204. Cambridge University Press, 1999. 11. Grigorchuk R., \.Zuk A. The lamplighter group as a group generated by a $2$-state automaton and its spectrum // Geom. Dedicata 87, 1-3 (2001), 209--244. 12. Grigorchuk R., \.Zuk A. The Ihara zeta function of infinite graphs, the KNS spectral measure and integrable maps // Proc. of the Conference "Random walks in Vienne", to appear, 2003.-- 39 p. 13. Kr\"on R. Growth of self-similar graphs.-- Vienna: Preprint ESI 1125, 2002.-- 14 p. 14. Bartholdi L., Grigorchuk R., Nekrashevych V. From fractal groups to fractal sets. In Peter Grabner and Wolfgang Woess, editors, Fractals in Graz 2001. Analysis -- Dynamics -- Geometry -- Stochastics, P.25--118, 2003. 15. Nekrashevych V. Iterated monodromy group.-- Preprint, Geneva University, 2002.-- 31~p. 16. Nekrashevych V. Limit spaces of self-similar group actions.-- Preprint, Geneva University, 2002.-- 33~p. 17. Nekrashevych V. Virtual endomorphism of groups // Algebra and Discrete Mathematics.-- 2002.-- V.1, № 1.-- P. 96--136. 18. Previte J.~P. Graph substitutions // Ergodic Theory Dynam. Systems.-- 1998.-- V.18, № 3.-- P. 661--685. 19. Nekrashevych V., Grigorchuk R., Sushchanskii V.I. Automata, dynamical systems and groups // Proc. of the Steklov Institute of Mathematics.-- 2000.-- V.231.-- P. 128--203. 20. Woess W. Random walks on infinite graphs and groups // Cambridge Tracts in Mathematics, 138.-- Cambridge University Press, 1999. |
| Pages |
159-175
|
| Volume |
22
|
| Issue |
2
|
| Year |
2004
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |