On the Fourier series of the zeta-function logarithm on the vertical lines |
|
| Author |
a_kond@franko.lviv.ua, brydun@franko.lviv.ua
Faculty of Mechanics and Mathematics,Lviv National University
|
| Abstract |
The Jensen-Littlewood theorem for a rectangle is generalized. The
generalization
is applied to the study of Fourier's series of the Riemann
zeta-function logarithm on the vertical lines.
|
| Keywords |
Fourier series, zeta-function logarithm, vertical line
|
| DOI |
doi:10.30970/ms.22.1.97-104
|
Reference |
1. Littlewood J. E. On the zeros of the Riemann zeta-function, Proc. Cambr. Phil. Soc. 22 (1924), 295–318.
2. Titchmarsh J. C. The theory of the Riemann zeta-function, Second edition, Revised by D. R. Heath-Brown, Oxford, 1986. 3. Selberg A. Old and new conjectures and results about a class of Dirichlet series, in “Proceedings of the Amalfi Conference on Analytic Number Theory" (eds. E. Bombieri et al.), Università di Salerno, Salerno, 1992, 367–385; also Collected Papers (Vol. II), Springer Verlag, Berlin etc., 1991, 47–63. 4. Balazard M., $\rm{Ivi\check{c}}$ M. The mean square of logarithm of the zeta-function, Glasgow Math. J. 42 (2000), 157--166. 5. Kondratyuk A., Kshanovskyy I. On the logarithmic derivative of a meromorphic function, Matematychni Studii 21 (2004), no.1, 98–100. |
| Pages |
97-104
|
| Volume |
22
|
| Issue |
1
|
| Year |
2004
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |