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The Jensen-Littlewood theorem for a rectangle is generalized. The generalization is applied
to the study of Fourier’s series of the Riemann zeta-function logarithm on the vertical lines.
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O6o6iena Teopema JlutTasyaa-lencena mis npaMoyroabHUKa. IJTO 0GOOIIEHIE TPHIMeE-
HeHO K m3ydennio paja Pypbe gorapudma m3eTa-GYHKINN HA BePTUKATHHBIX TTPAMBIX.

Introduction and main results. The Riemann zeta-function is defined as

1 1\~
((s) = — or ((s)= (1__5> , Res>1,
=35 o =TI (1-;
where the product is over all prime p.

This function was first considered by Leonhard Euler for real s in 1737. He also repre-
sented it as the product over the primes. G. F. B. Riemann showed (1859) that ((s) had a
meromorphic continuation to C with a single pole at s = 1.

In his fundamental paper [1] (see also [2]) J. Littlewood established for a rectangle an
analogue of the well-known Jensen theorem and deduced from it, in particular, that

1

1
g 2

1
/N(n,T)dnzO(Tlog ), o>1/2, T — oo,

where N(o,T) is the number of zeroes of the Riemann zeta-function ((s) whose imaginary
part v satisfies 0 < v < T and the real part is greater than o. Further, this result was
improved [2].

Our purpose is to generalize the Jensen-Littlewood theorem for a rectangle and apply
the generalized theorem for the study of the zeta-function and its zeroes.

If f(s) is a holomorphic function in the rectangle R = {s=oc+it : 0 <t < T, a < 0 < 3}
then the function log | f(s)| is subharmonic in R, Alog|f(s)| > 0 in the sense of distributions
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on R where A is the Laplace operator and ;=Alog|f(s)| = >.,0(s —p). Here {p} is the
sequence of zeroes of f taking into account their multiplicities and d(s — p) is the Dirac
measure concentrated at the point p.

Denote the measure 3=Alog | f(s)| by p, consider the orthogonal system {ei%ﬂkt} , ke,
on [0,7] and the Fourier-Stielties coefficients

e ) // T dp(s) = Y Ty = Tmp;.

Py ER

If f(s) =((s), a=0cand 3 > 1 we have Ny(o,T) = N(o,T). The coefficients Ny(e,T),
k € Z, determine completely the distribution of zeroes of the function f in R.
Define log ((s) as usually [1], [2] (see also 1° below) and denote its Fourier coefficients by

T
1 2
lp(o,T) = T / e~k log ((o 4 it)dt, k€ Z.
0

Generalizing the Jensen-Littlewood theorem, we establish connections between
Ni(o,T) and lx(o,T) and some their properties.

By the Parseval equality and the Hausdorff-Young inequality the coefficients [;(o, T') are
connected with the integral means of log ((s). It is easy to prove the following

Proposition. i) The Riemann Hypothesis (RH) for the zeta-function is equivalent to the
tollowing assertion.
For any fixed 0, 1/2 < 0 < 1, and any fixed T' > 0 there exists C'(o,T) such that

1/q

%/‘bgK(U—I—it)qut < C(o,T) (1)

for all ¢ > 1.
ii) For the validity of RH the following condition is sufficient.
For any fixed 0,0 < o < 1, and any fixed T' > 0, there exists ¢(o,T) such that

[lk(o; T)lp < (o, T) (2)
for all p, 1 < p < 2, where
1/p
[lx(o T, = (Z k(o ) :
kEZ

Indeed, if RH holds then log |((o + it)| is continuous on [0,7],1/2 < 0 < 1 and we have
(1) with C(o,T) = max{‘ log |((o + zt)H :0<t<T}.

Conversely if we have (1) for all ¢ > 1 then supy ;7 ‘ log |§(U—|—it)|‘ < 4oo,1/2 <0< 1,
and we obtain ((o 4 it) # 0.

Using the Hausdorf-Young inequality we obtain (1) from (2).
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Note also that with the use of the Parseval equality, the results of A. Selberg [3], M. Bal-
azard and A. Ivic [4] give

3 W%,T)f —loglog T + O <\/loglog T> . T = oo,
kEZ
and

Sl I =Y 35 3 = ol T),
k=1 P

kEZ

for fixed o, 1/2 < o < 1, where p denotes primes, r(o,T) = O(T“)=1), 0 < ¢(o) < 1, T —
“+00.
Put K = 27k/T, k € Z, T > 0.

Theorem 1. The following relations hold:

I}
om . )
o, T) = e [ RN, T) g+
] I}
i Ko —Kn : I((U_ﬁ)
+ e /6 (log ¢(n +1T") — log ((n)) dn + ¢ (B, T), keL, (3)

e} e}
27

T / Ni(n, T)dn = lx(o,T) + K/lk(n,T) dn +

s
0 [ omcta) 1o Cln4-17)) dy 15, 7), ke (1)

0<o<p<l.

For # > 1 the relations are slightly modified (see the remark below), because ((s) has
the pole at s = 1.

If £ =0 both of the relations give the Jensen-Littlewood theorem.

We prove also the following properties of the Fourier coefficients {x(o,T').

Theorem 2. For fixed T > 0 the Fourier coefficients (o, T) are continuous functions of
0. They are bounded for o > o9 > 1/2, T > 1, by a constant depending of cq. The Fourier
coefficient ly(o,T) is bounded if o > 1/2, T > 1.

1°. Preliminary Lemmas.

Lemma 1. ([5]) Ifu(t) >0 on [0,T] and I = %IT u(t) dt exists, then

0

M| =

T
/10g+ u(t) dt < max(1,logl).
0
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Lemma HL ([1]).
T
/|§(a+ i)|Pdt < AVT, 2<T, 1/2<0<2,
2

where A = const, V = min{log T, (¢ — 1/2)7*}.

To formulate the following lemma we introduce some notions.

Let ¢ be a holomorphic function in the closure of the rectangle R, = {s = o+ it :a <
o < 3,0 <t < T} that does not have zeroes on dR,. Denote by {p;} the set of its zeroes in
Ry, p; = 0; 4 1t;.

Let log () be determined. Put

S

log ¢(s) — log p(B) = / #'(¢)
Ié]

¢(€)

dg,

where the integral is taken along a path in R, with the slits {TO']‘ +it;: = <1< 1}, whose
J

endpoints are (# and s.
Further, we denote

T
(o, T) = = / e Fllogp(o +it)dt, ke Z,
0

Ni(o,T) = Z e B keZ, t;=Imp;,

Py €R,

B
2
Mo T) = 7 [ N T)an, ke

Denote also No(o,T') = N(o,T). The function N(o,T') gives the number of zeroes of ¢
in R,.

Lemma 2. The following relations hold:

B
2T
Ih(a,T) = %el‘a/e_I”N (o,T)do +
] B
i Ko —Ko N K(a-p)
—I—Te /e (log (o +1iT) —log p(o)) do + ¢ (8, T), keZ, (5)

B
Mip(a,T) = lp(a, T) + K/lk(a,T) do +

B
+ %/(bg (o) —log oo +iT)) do — (3, T), k€ Z. (6)
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The proof is a routine calculation based on the known idea of integrating the Argument
Principle and consists in frequent integration by parts and elementary transformations.
Theorem 1 is Lemma 2 formulated for ((s).

Remark. If o > 1 then neither zeroes nor poles of ((s) lie in R. So, Ny(o,T) =0, 1 > o,
log ((s) is a holomorphic function on R [2] and relation (3) takes the form

] I}
li(o,T) = %6“ / e " (log C(n +iT) —log ¢(n)) dn + “" (B, T), keZ. (7)

This is Cauchy’s theorem for the holomorphic function e=%%log ((s) on R.
Integrating (7) over o from « to 3 we obtain

B B

lp(a, T) + K/lk(a,T) do + %/(log ((o) —log(¢(oc+iT)) do — (8, T)=0, ke€Z,

O O

after routine calculations. This is (4) for o = a.

2°. Proof of Theorem 2. Let & = 0 then relation (3) written for ((s) implies

B

s :
(o, 1) = 5 [ N Tydn+ . [ (logCln i)~ logCl) dn+ W(B.T). ()

If in (8) we make 3 — 400 then the last term disappears, and the first integral of the
right side is equal to fgl No(n,T) dn. Taking into account that ((s) has the simple pole at
s = 1 we obtain

1 +o0
2m 1 .
(o, ) = 5 [ Nt Ty = 7 [ (log (o) o G+ T)) diy (9)
where
N(o,T)— 2 1
R
0, o> 1.
[t was proved in [1] that
+oo
[ st = log Cly+ 7)) dy = Ollog ). T +oc, 125052 (1)

[

So, (9) gives

2 1 log T'
ZO(O',T):%/<N(77,T)—§> al77—|—O<O§1 ), T — +o0.
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Using Selberg’s result (see, for example, [2, p. 240])

1
/N(U,T) do=0(T), T — +oo,
1/2

(11)

we obtain

lo(o,T)=0(1), T— 40, 1/2<o0.

Let k € N. If in (3) we make 3 — 400 then

+oo . Foo
2

T e NN TYdy = e 2 U(0, T) + !

T/G‘K” (log ¢(n) —log ((n+iT)) dn, k€ Z,

[

[

where Ny(o,T) = ZpJeRo e~ — 2.
Consequently,
+oo
2m —K(n—o)
o) < 2 [ RN . 1) s
o
+ /G‘K(”‘”) (log (1) — log ((n +iT)) dn| . (12)

[

We will estimate the integral on the right side of inequality (12). Integration by parts in
the second integral of the right side of relation (12) gives

+oo

/ e—K(n—U) (1Og g(n) — 1og C:(U + ZT)) d77 =

[

+ oo + oo

- / e~ Kn=a) g / (log ¢((w) — log ((w +1T)) dw| =

o n

+ oo

_ _/(1og§(n)—log4(n+iT)) di +

[

400 +co
+ I{/e‘f((”_g)/(log ((w) = log ((w +iT)) dwdn| < (13)
o n
+oo

< / (log C() — log C(n + iT)) d| +

[

+ oo + oo

+K / e~ n=0) / (log ((w) — log ((w + iT)) dw dn)|.

o n
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Applying (10) to both last integral in (13) we have

+oo
/ K02 (log ((n) —log ((y +iT)) dn| = O(log T), T — +oc. (14)

[

Using once more Selberg’s result (11) and the inequality |N(o, T)| < |N(0o,T)| we obtain
from (12) and (14)

(o, T)| = O(1), T — +oo, keN.

Now let 1/2 <09 <o <2,1<T.
Taking the imaginary parts in (9) and using some properties of ((s) J. Littlewood ob-
tained [1]:

T

1
QW/N(U,T)dU:/log

1/2 0

1
¢ (5 + zt)‘ dt + O(logT), T — +o0.

Since the left side of this equality is nonnegative, we have

T T
/log_ (o +it)| dt < /10g+ |C(o 4 it)|dt + O(log T'), T — +oc.
0 0
Consequently,
T T
/ ‘ log |((o + zt)H di < 2/10g+ |C(o 4 it)|dt + O(log T'), T — +oc.
0 0

On the other hand, using Lemma 1 and Lemma HL for sufficiently large T we obtain

T T
2 1
- + ; < - ‘N2 <
T_Q/log |C(0 +it)| dt < max | 1,log T_2/|§(U—|—zt)| dt <
2 2

AT . 1 AT 1
< max | 1,log T min log T, 1 < log T3 + log 1=
- 07 2 - 07 32

= log -+ 0(1), T — +oo.
gg — 3
So,
1 r 2 r
f/‘logm(a—l—itmdtg f/1og+|g(g+¢t)|dt+0(1) — (15)
0 0
1
= log T +0(1), T — oo

Jo 5
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Denote the Fourier coefficients of log |((s)| and arg ((s) by Ci(o,T) and Ay(o,T') respec-
tively.

It follows from (15) that the Fourier coefficients Cy(o,T), k € Z, are bounded for oy <
c<2,1<T.

Since lx(0,T) = Ci(o,T)+ 1 Ap(o,T), A_k(o,T) = Ax(o,T), and

|Ax(,T)| < |lx(o, T)| + |Cilo, T)| = log +0(1), T— 4o, keEN,

1
0'0—5

we have

1
-4+ 0(1), T— 400, keNl,

2

|l-k(0, T)| < [Cr(a, T) | + [Ar(o, T)| = log

09

where the constant in O(1) is absolute. This completes the proof.
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