On a homogeneous operator extending partial ultrametrics

Author
I. Z. Stasyuk
Lviv Ivan Franko National University
Abstract
Recently, E.D. Tymchatyn and M.M. Zarichnyi constructed a continuous extension operator for partial ultrametrics on a zero-dimensional compact metrizable space. This extension operator preserves the maximum of two ultrametrics but fails to preserve the homogeneity. The aim of this note is to provide a continuous homogeneous operator that extends partial ultrametrics and preserves norms.
Keywords
continuous extension operator, partial ultrametric, zero-dimensional compact metrizable space
DOI
doi:10.30970/ms.22.1.73-78
Reference
1. Hausdorff F. Erweiterung einer Homöomorphie, Fund. Math. 16 (1930), 353–360.

2. Bessaga C. On linear operators and functors extending pseudometrics, Fund. Math. 142 (1993), no.2, 101–122.

3. Banakh T. $\rm AE(0)$-spaces and regular operators extending (averaging) pseudometrics, Bull. Polish Acad. Sci. Math 42 (1994), no.3, 197--206.

4. Banakh T., Tymchatyn E.D., Zarichnyi M. Extensions of metrics: survey of results, (in preparation).

5. Tymchatyn E.D., Zarichnyi M. On simultaneous linear extensions of partial (pseudo)metrics, Proc. Amer. Math. Soc. 132 (2004), 2799–2807.

6. Mazurkiewicz S. Sur l'espace des continus peaniens, Fund. Math. 24 (1935), 118–134.

7. Tymchatyn E.D., Zarichnyi M. A note on operators extending partial ultrametrics, Preprint.

8. de Groot J. Non-archimedean metrics in topology, Proc. Amer. Math. Soc. 7 (1956), 948–953.

9. Nadler S.B. Hyperspaces of sets, Marcel Dekker, Inc., New York and Basel, 1978.

10. Assouad P. Sur la distance de Nagata. C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no.1, 31–34.

11. Movahedi-Lankarani H. An invariant of bi-Lipschitz maps, Fund. Math. 143 (1993), no.1, 1–9.

Pages
73-78
Volume
22
Issue
1
Year
2004
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue