On a homogeneous operator extending partial ultrametrics |
|
| Author |
topology@franko.lviv.ua
Lviv Ivan Franko National University
|
| Abstract |
Recently, E.D. Tymchatyn and M.M. Zarichnyi constructed
a continuous extension operator for partial ultrametrics on a
zero-dimensional compact metrizable space. This extension operator
preserves the maximum of two ultrametrics but fails to preserve
the homogeneity. The aim of this note is to provide a continuous
homogeneous operator that extends partial ultrametrics and preserves
norms.
|
| Keywords |
continuous extension operator, partial ultrametric, zero-dimensional compact metrizable space
|
| DOI |
doi:10.30970/ms.22.1.73-78
|
Reference |
1. Hausdorff F. Erweiterung einer Homöomorphie, Fund. Math. 16 (1930), 353–360.
2. Bessaga C. On linear operators and functors extending pseudometrics, Fund. Math. 142 (1993), no.2, 101–122. 3. Banakh T. $\rm AE(0)$-spaces and regular operators extending (averaging) pseudometrics, Bull. Polish Acad. Sci. Math 42 (1994), no.3, 197--206. 4. Banakh T., Tymchatyn E.D., Zarichnyi M. Extensions of metrics: survey of results, (in preparation). 5. Tymchatyn E.D., Zarichnyi M. On simultaneous linear extensions of partial (pseudo)metrics, Proc. Amer. Math. Soc. 132 (2004), 2799–2807. 6. Mazurkiewicz S. Sur l'espace des continus peaniens, Fund. Math. 24 (1935), 118–134. 7. Tymchatyn E.D., Zarichnyi M. A note on operators extending partial ultrametrics, Preprint. 8. de Groot J. Non-archimedean metrics in topology, Proc. Amer. Math. Soc. 7 (1956), 948–953. 9. Nadler S.B. Hyperspaces of sets, Marcel Dekker, Inc., New York and Basel, 1978. 10. Assouad P. Sur la distance de Nagata. C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no.1, 31–34. 11. Movahedi-Lankarani H. An invariant of bi-Lipschitz maps, Fund. Math. 143 (1993), no.1, 1–9. |
| Pages |
73-78
|
| Volume |
22
|
| Issue |
1
|
| Year |
2004
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |