One criterion of $\gamma$-type finiteness of a function analytic in a half-plane

Author
A. Ya. Khrystiyanyn
Faculty of Mechanics and Mathematics, Lviv Ivan Franko National University,
Abstract
Let $\gamma$ be a growth function and let $f$ be an analytic in the closure of the upper half-plane function such that $|f(t)| \leq 1$ for real $t$. The classes of subharmonic functions of finite $\gamma$-type were introduced and studied by K.~G.~Malyutin. We prove a criterion of $\gamma$-type finiteness of $ \log |f|$ in the terms of the Fourier coefficients of $\arg f$.
Keywords
analytic function, half-plane, growth function
DOI
doi:10.30970/ms.21.2.151-169
Reference
1. Rubel L. A., Taylor B. A. Fourier series method for meromorphic and entire functions, Bull. Soc. Math. France, 96 (1968), 53–96.

2. Rubel L. A. Entire and meromorphic functions, New York: Springer, 1996, 200 pp.

3. Кондратюк А. А. Ряды Фурье и мероморфные функции, Львов, Выща школа, 1988, 195 с.

4. Malyutin K.\ G. Fourier series and $\delta$-subharmonic functions of finite ${\gamma}$-type in a half-plane, Math. Russ-Sb. 192 (2001), 846--861.

5. Гришин А. Ф. Непрерывность и асимптотическая непрерывность субгармонических функций, Мат. физика, анализ, геометрия, 1 (1994), 193–215.

6. Grishin A. F., Fedorov M. A. Some questions of the Nevanlinna theory for the complex half-plane, Math. Physics, Analysis and Geometry, 1 (1998), № 3, 223–271.

7. Гольдберг А. А., Островский И. В. Распределение значений мероморфных функций, М.: Наука, 1970, 591 с.

8. Govorov N. V. Riemann's boundary problem with infinite index, Birkhäuser, Basel 1994.

Pages
151-169
Volume
21
Issue
2
Year
2004
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue