One criterion of $\gamma$-type finiteness of a function analytic in a half-plane |
|
| Author |
khrystiyanyn@ukr.net
Faculty of Mechanics and Mathematics, Lviv Ivan Franko National University,
|
| Abstract |
Let $\gamma$ be a growth function and let $f$
be an analytic in the closure of the upper half-plane function such that
$|f(t)| \leq 1$ for real $t$.
The classes of subharmonic functions of finite $\gamma$-type were introduced
and studied by
K.~G.~Malyutin. We prove a criterion
of $\gamma$-type finiteness of $ \log |f|$ in the terms of the
Fourier coefficients of $\arg f$.
|
| Keywords |
analytic function, half-plane, growth function
|
| DOI |
doi:10.30970/ms.21.2.151-169
|
Reference |
1. Rubel L. A., Taylor B. A. Fourier series method for meromorphic and entire functions, Bull. Soc. Math. France, 96 (1968), 53–96.
2. Rubel L. A. Entire and meromorphic functions, New York: Springer, 1996, 200 pp. 3. Кондратюк А. А. Ряды Фурье и мероморфные функции, Львов, Выща школа, 1988, 195 с. 4. Malyutin K.\ G. Fourier series and $\delta$-subharmonic functions of finite ${\gamma}$-type in a half-plane, Math. Russ-Sb. 192 (2001), 846--861. 5. Гришин А. Ф. Непрерывность и асимптотическая непрерывность субгармонических функций, Мат. физика, анализ, геометрия, 1 (1994), 193–215. 6. Grishin A. F., Fedorov M. A. Some questions of the Nevanlinna theory for the complex half-plane, Math. Physics, Analysis and Geometry, 1 (1998), № 3, 223–271. 7. Гольдберг А. А., Островский И. В. Распределение значений мероморфных функций, М.: Наука, 1970, 591 с. 8. Govorov N. V. Riemann's boundary problem with infinite index, Birkhäuser, Basel 1994. |
| Pages |
151-169
|
| Volume |
21
|
| Issue |
2
|
| Year |
2004
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |