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Let v be a growth function and let f be an analytic in the closure of the upper half-plane
function such that |f(¢)| < 1 for real t. The classes of subharmonic functions of finite y-type
were introduced and studied by K. G. Malyutin. We prove a criterion of ~-type finiteness of
log|f] in the terms of the Fourier coefficients of arg f.

A. A. Xpuctuarun. Qdun xpumepuii KoneurocmU Y-muna HYHKYUU aHAAUMUYECKOT 6 NoAY-
naockocmu [/ Maremaruyani Cryaii. — 2004. — T.21, Ne2. — C.151-169.

Mycte v — dyHKUEA pocTa, a QyHKNUA f aHATUTHYEeCKAad B 3aMBIKAHUN BEPXHEN TOJY-
mrockocTn Takasd, 910 |f(t)] < 1 aaa xaxgoro emectsenroro t. Kaaccel cy6rapMOHIYeCKIX
GYHKIMI KOHeIHOr O Yy-Tuna Obuin BBegenbl n maydensl K. ['. Mamoruaeiv. MbI 1oKazbiBaem
KpUTepHil KoHewHOCTH Y-Tua (pyukiun log | f| B Tepmunax kospduumentos Pyphe GyHKIUT

arg f.

1. Introduction and main results. The method of Fourier series for entire and
meromorphic functions was developed by Rubel and Taylor [1]. Let f be a meromorphic
function in the complex plane, Z(f) and W(f) be its sets of zeroes and poles respectively.
Let T(R, f) be the Nevanlinna characteristic of the function f and Cy(R, f) be the Fourier
coefficients of log | f],

27
1 . ,
Cu(R, f) = > /log |f(Re)| - e~ ™dh, R>0, ke

0

Definition 1 ([1]). Let v be a positive, continuous, unbounded and increasing function on
[0,00) called a growth function. A meromorphic function f is called a function of finite
y-type if there exist positive constants A and B such that T'(R, f) < Ay(BR) for all R > 0.
We denote the class of such functions by I'.

The equivalence of the following properties was established in [1] (see also [2, 3]):
(1) f € I'; (2) the sequence Z( f)(or the sequence W ( f)) has finite y-density and |Cy(R, f)| <
A1v(B1R), k € Z for some positive constants Ay, By, and for all R > 0.
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152 A. YA. KHRYSTIYANYN

K. G. Malyutin [4] proved the analogue of this statement in the case of complex half-
plane. Moreover, he proved his results for subharmonic and d-subharmonic in the upper
half-plane functions. We present this result below as Theorem M.

We deal with the Fourier coefficients of arg f, where f is an analytic in the closure of
the upper half-plane function. We give one criterion of y-type finiteness of such functions in
terms of these coefficients.

The notion of complete measure corresponding to a subharmonicin C; = {z € C: Imz >
0} function v which has a positive harmonic majorant in each bounded domain in C; was

introduced by A. F. Grishin [5],

AK) =2 [ nddu() — v (K E). (1)

KnCy

where 1 is the Riesz measure of v. The measure v is called the boundary measure. If
v({a}) = v({0}) = 0, then
b
v([a;b]) = lim [ v(x + iy)de.

y—+0
a

The measure A has the following properties:
1) A is finite for an arbitrary compact set K C C;
2) A is a positive measure outside R;

3) Ais a zero measure on C_ = {z € C: Imz < 0}.

We denote A(R) = A <{Z Szl < RPN C+>.

Definition 2 ([6]). A subharmonic function v in C; is said to be just subharmonic if

limsupwv(z) <0

z—1

for each t € R.

The class of just subharmonic functions in C; will be denoted by JS.
The notion of a function of finite y-type in a half-plane was introduced in the paper [4]
of K. G. Malyutin. Let

1

m(R,v) = — /07r vy(Re?)singdp, N(R,v) = /,,R A (1)

13

dt
R

where A = A, — A_ is the Jordan decomposition of the complete measure A corresponding
to the function v.
The Nevanlinna characteristic of a just subharmonic function v is defined in [6],

T(R,v)=m(R,v)+ N(R,v)+m(r,—v), R>r, r>0.

The growth function ~ is assumed to satisfy the condition

. . .7(R)
l f—=>0.
1m 1n R >

R—o0
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Definition 3 ([4]). A function v € JS is called a function of finite vy-type in the upper
half-plane if there exist constants A and B, both positive, such that

A
T(R,v) < E’y(BR), R>r.

The corresponding class of just subharmonic functions of finite y-type in the upper half-

plane will be denoted by JS(%).

Definition 4 ([4]). A positive measure A has finite v-density, if there exist positive A and
B such that " 0
At A
N(R,\) := —=dt < =vy(BR
(R = [ 5= Zas R
for all R > r.

Definition 5 ([4]). A positive measure A is called a measure of finite v-type if there exist
positive constants A and B such that for all R > r

MR) < R- Ay(BR).

If X is a measure of finite y-density then A is a measure of finite y-type. This statement
was proved in [4].

We denote G = {z : Imz > 0,r < |z| < R}, where r > 0 and R > r.

We consider a function f which is analytic in the closure of the upper half-plane C, .

Let f(z0) = 1, |z0| = r, > 0. We define the function log f(z) as follows. If no zero
of f(2) lies on the ray z(¢) = te'’, t > r, we define log f(Re") as a value obtained from
log f(20) = 0 by continuous variation of the argument along the arc |z| = r from 2, to re®
and then along the ray indicated above to z = Re'’. If the ray contains zeroes we define

: 1 . '
log f(Re'®) = lim o {log f(Re'"*)) + log f(Re'~9)}
e—+

We denote arg f(Re’) = Imlog f(Re').

We continue the function log f in lower half-plane C_ = {z € C : Imz < 0} as follows
log f(Re™"") = —log f(Re?), 0 < 0 < .

Since after the continuation in this way the function log | f| is an odd function with respect
to # and the function arg f is an even function, the Fourier series of the function log f(Re*)
will be the following:

log f(Re’) = Z (R, )™ =) er(R, f)sink0 +i - ax(R, f)cos kb,
k=—co k=0

0<8<nm, r<R,

where ,
1
bR ) = 5= [ log (e,
2
0
2 r 0 . 2 f 10
cx(R, f) = - log |f(Re")| - sink0df, ar(R, f) = — [ arg f(Re™) - cos kfdb.
0 0

The main results of this paper are the following
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Theorem 1. Let v be a growth function and lilgn inf@ > 0. Let f be an analytic in the
—+00
closure of the upper half-plane function. Then the following properties are equivalent:

(i) log[f] € J5();
(ii) |ax(R, f)| < Ay(BR), for some positive A, B and for all R > r,k € {0} UN.

Theorem 2. Let v be a growth function and h}gn inf W( LS 0. Let f be an analytic in the
%
closure of the upper half-plane function. Then the fo]]owmg properties are equivalent:

(i) log | f] € JS5(v);
(ii) |lk(R, f)| < Ay(BR), for some positive A, B and for all R > r, k € Z.

To prove Theorem 1 we need four lemmas. As a corollary of one of them we obtain
another proof of the Carleman formula ([7], p. 19) and the analogue of Jensen formula for
the upper half-plane.

2. Auxiliary results.

Lemma 1. Let f be an analytic in Cy function, (z;) be its sequence of the zeroes. Then
the following relations hold:

R
zi|F th _ dt
ck(R,f)ZZ/ Z<|tzk| +|Zl|k>smk0j —
J

2;€EGY
1 B k-1 Rk
ke
+ 2 [ (S = i) ol + (1) log =) e+ 2)
1 koo Rk J " 1 /r* RF [ i0
—|-; (ﬁ—l__) /log|f(re )| - sin kOdf + — (Rk _r_k> /argf(re ) - cos kfdo,
0 0

LeN, R>r,

R
zi|F th _ dt
ak(R,f)ZZ/ 3 (ltzkl _|Zl|k>smk0j —
J

25 €EG

w2 [ (S i ) Qos ]+ (=) g (o)t 5

r

Lk RRY [ Lt RN T i
+= (ﬁ — Tk) /log|f(re )| - sin kOdO + — <ﬁ + —) /arg f(re™) - cos k0db,
0 0

ke {0JUN, R>r,
where Gy = {z:Imz > 0,r < |z] < t}.

Proof. Let us consider the domain Gp = {z : Imz > 0,r < |z|] < R}, where r > 0,
R > r. If no zero of f lies on dGr we have by the residue theorem applied to the function

(['(2)/f(2))z7F, k € Z, in Gp:

f'(z) — 9 resf/(z)z_k
/f(z)z dz =27 %;“Jf(z) , kez, (4)

aGR
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where z; = |z;|¢'% are the zeroes of function f and no zero lies on the real axis. If the
function f has zeroes on the real axis and not on Cr = {z = Re'’ : 0 < 0 < 7} then (4) can
be rewritten as follows:

Mz:_kalz = 271 res f/(z)z_k T res f/(z)z_k kelZ
t/f@> D I A D mmTgge kel

2;€GR,Im 2;>0 2;€GR,Im2z;=0

8Gr
But, since the final expressions (2) and (3) are independent of zeroes that lie on the real
axis, we can deal only with zeroes in the interior of Gr. More precisely, the last term will
disappear. This will be clear from the proof.

It is well-known that an analytic function f in some neighbourhood of its zero z = «
with multiplicity m has the representation f(z) = (z —a)™ - p(z), where ¢(a) # 0, ¢ is an
analytic function in a neighbourhood of a.

So, the function f’(z)/f(z) in a neighbourhood of @ can be presented as follows

f'iz)  m  ¢(E)

f2) " —a el

Then (4) can be rewritten as

!
') 27Rdz = 2mi Z ()%, ke (5)
8GR : 2 €GR
Further, 0Gr = CRUC U[—R; —r]U[r; R], where C is C, taken in the negative direction.
Applying this to the left side of (5), we have

[ e [Hru [ S

/ /
/fj L J}j —kd ke 7.

7,

Let us consider each term in the right side of (6):

ngg% /f/ rhemt iy,
[ 58 j
[ foe [R5

[—R;—7] -R
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Denoting F'(z) = f'(2)/f(z) we can write (6) in the following way:

Kis

1 F(R®)ReiP e~ g = Z R_k LR_k F(re®)re® e g
27‘[‘ € e € = — Z]k 27‘[‘ rk re re €
ZJ R
0 L . g
F R (—aN S kez
o [P+ (0 R S ke

r

According to the definition of the function log f we have

f‘/

uez@

(8)

log f(Re) —log f(re') = Z9/

Relation (7) is proved for all R > r except R = |z;|. We replace R by ¢ in (7). After that
we divide (7) by ¢ and integrate it with respect to ¢ from r to R,

7 a N\ dt
10 10 —ik0 _
o (/ F(te”)tee d@) n / (§ (2) ) -+
r 0 r

25 €EG

R E
1 t ; 160 10  —ik0 dt
—|—§ (;) (/ F(re®)re”e™"d0 N (9)
r 0

271m t* (/ (F(2) + (—1)kF(—:z;)) i‘i) %7 ke

Further, we switch the order of integration with the aid of the Fubini theorem,

/ (/ Fle t P Md@) / (/ Fle o) e’e Mdt) do.

Applying this to the left side of (9) and using (8), we have

R s s R
— (/ F(tele)tewelked@) (/ F(tele)ewezwdt) df =
27 i 27T

r

/ ( / F(te') ”dt) e M) = — / (log f(Re’) —log f(re”)) e=*do = (10)

= — / log f(Re®)e ™ *dp — — / log f(re®ye*dp.
27 27
0 0
At first we consider the case k = 0. We have

i. (/(F(x)+F(x>> ) %— QL/ log f(t) —log f(r) +log f(—r)—

R
dt
-(log f(—r) —log f(r /7

(log £ (1) —log f(—1)) -+ -1

L
Q
o
~
N
L
S’
S’
| &
Il
‘H
%\DU
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and

T R

1 " 4 dt 1 di
2/(/ re d@) - =5 [ (og f(=r) —log f(r)) - =

' n (12)

1 t

— 5rillog f(=r) ~Toe ) [ -
Then from (9) and (10), using (11) and (12), we obtain
R 7r
—/10 f(Re®)dh = / o L f(re?)do+
: - z; €G ! 2m :

’ ° (13)

R
7 d
2—/ log f(t) — log f(—t)) ;

Now we will transform the right side of (9) introducing the following auxiliary notations:

R T
1 [t N di
Li(k) = %/r_’f (/ F(rew)rewelked@) 7 k e Z\{0},

0

I(k) = L/tk (/ (F(z) + (-1)"F(-2)) ‘if) %, k € Z\{0}.

r

At first we transform [;:

ph—1 1 Rk 7 . . .
I( /—dt/ rett re be=h0gp = — [ — — 1 /F(rew)rewe_lwd@ =
~ o 2k

0

_ (R_ . 1> . / T log flrei®) = (R— _ 1) ((—1)" log (=) — log f(r))+

k
—|-i (Ij—k — 1) /log flrehe™™do, ke Z\{0}.

Then

Li(k) = ﬁ (R— — 1) ((—1)’“rl log f(—7) + log f(r)) +

—|-i (R—k — 1) /log flrehe™™do, ke Z\{0}.
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¢
Before transforming I, we denote g;(t) = [ (F(z) 4 (—=1)*F(—2)) %. Then integrating

by parts we obtain

= oo [(F@+ 0P = o [ (P + (1 ) de ke 2\,
Further,
/(F(w)Jr(—l)kF(—x))dx: /dlogf(t)+(—1)’“+1/d10gf(—t) =
= log [(R) —log f(r) + (=1)"*(log f(—R) —log f(-1)). k€ Z.
and
R’f/(F(xH(—l)’“F(—x))i—f = R’“/dloi,f(x) +(—1)’“+1Rk/7dbg§_$> _
= R* (;kbg f(R) — riklog flr)+ k/logf(x)xifl) +
—I—(—l)k-l—le (;k log f(—R) — :—klog fl=r)+ k/log f(:z;)xii) =
—tog f() — () o Fr) + (-1 (bgf(—ﬁ’) -(4) 1ogf<—r>) -
—|—kRk/(logf(:z;)—|—(—1)k+1 log f(—x)) %, k€ Z\{0}.
Therefore, r
(k) = - (log () = -t F(r) + (=171 (l0g F(— ) — - 10g f(—r)))+
+273Wk]%’“ / (log f(2) + (—1)"*' log f(—z)) x‘if1+

r

+273W (—log f(R) +log [(r) + (=1)*(log (=) —log /(1)) =
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R
dzx
ZWZkkRk/ <10g f(z) + (_1)k+1 log f(_$)> s +

r

Tomptlos /) + <—1>’““ log f(—r) - %<log Fr) + (=1 log f(—r)) =
B 271m ;jﬂ (log f(2) + (—=1)"*" log f(—x)) da+
+27r1ik (1 - %) (log f(r) + (=1)*'log f(=1)), k€ Z\{0}.
Finally,

R

LK) = 55 [ i o ) + (-1 log S(—2) dot

(15)

+27r1ik (1 - %) (log f(r) + (=1)**tlog f(—r)), k€ Z\{0}.

Taking into account the transformations, that have been made earlier, (9) can be rewritten

as follows: _

1 o
— /log flree ™ do =

s

1 f . .
> / log f(Re)e™*df —
0

0

_ /R (; (Zi) k) % i ﬁ ((?)k - 1) (log f(r) 4+ (=1)"*" log f(—r))+
1

Fis R
bae (5 1) [romstrensean — 5b [ A0 (o 10 + (-1 o f(-2) do-
2r \ rk omi | xhL
0 r

_27r1ik (1 - (?) ) (log f(r) + (=1)**'log f(—r)), ke Z\{0},
o (2)) 22

T R
1 . .
> / log f(Re®)e™*do = / (
0 25 €EG

i [ (log fle) + (<) og f(—0) de, k€.

r

or

Since relation (16) takes place for each k € Z, we can write

dt 1 R [ »
k) — 4+ — log f(re )e™ do+

T R
%/logf(Rezﬁ)ezkﬁdez/ (Z t_ t —-
° (17)

0 ” 2, €EG Z]
R
1
2_/ —7 (log f(a) + (=1)"*" log f(—x)) dx, k€ Z.
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We have ¢;(R, f) = Rebi(R, f), where
2 | o
be(R, f) = — [ log f(Re")sin kOdf, k € N.
T

0

To evaluate the coefficients by (R, f) we use (16) and (17).
The coefficients ax(R, f) = Im b} (R, f), where

Kis

2 .
bi(R, f) = - /log f(Reycos kOdh, ke {0} UN

0

can be obtained similarly. Lemma 1 is proved. O

Remark 1. Let n(t, f) be the zero counting function of the function f in Gy and N(R, f) =
er @dt then, taking the real parts of both sides of relation (13), we obtain the analogue
of Jensen formula for the upper half-plane in the case when the real axis does not contain

the zeroes of the function f:

7r 7r R
_ L 0 _ L o re'? L ar —arg f(— ﬂ
N(R. ) = o= [1ogl ke a0 = o= [ogre®)jdo + o [ (ang si0) e £~
(13)

Remark 2. It should be noted that the Carleman formula ([7], p. 19) can be obtained from
(2) by taking k = 1:

1 .
—I——R/log |f(Re?)| - sin 0dO + A,(f, R)
T
0

where z; = |z;]e!% are the zeroes of the function f, A,(f, R) = O(1) as R — oo.
Indeed, transform the integral

R

; [ dt
/ Z @ + — )sind; | —
t |Z]| t
e 2z, €Gh
using the integration by parts,
R = y R y R )
2; i . 1 B . 1 sin §; B
/ Z (T—Fw) sin §; 7—/ Z |z;] sin 6; t_2+/ Z P dt =
" 2z, €Gh " 2z, €Gh e 2, €G

= /R (Z stinej) d (—%) —I—/R (Z]ze;;t Sizej) dt =

r zj €Gt r
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R R
| sin 0; 1 0; inf;
-y B [ (ze) > /td(z )
:
2z, €Gh I

25 €EG 2;€EGR e

ZJEGR ”
Since the functions ¢(t) = Ez]th |zj|sin; and (1) = EZ G, S]nﬁ have the jumps

|zj| sin §; and sin §,/|z;| respectively at the points ¢; = |z;| then

i R
1 (9 0
“ il z;€GR %

e 2;€EGY " 25 €EG
and
i EA dt |z;] sin 0 Rsind
Zj ) zj|sin 0; sin 6;
=4 — 0, ] —=— —_— .
/ §:<t +v0$nf I Dl e Dl
2;€G z;€GR 2;€EGR

r

From (2) we have

R

Cl(Raf):Q/ >,

2;€EGY

|Z]| . dt
(B smn ) F+
1 / 1 R
+2 [ (55— 15 Gog 0]+ tog (=)ot
1
T

7r ' . 7r '
<L + E) /1og | f(re?)| - sin 0dO + — (L — E) /arg f(re'y-cosfdf, r < R,
r T\R r
0 0

R
Rsind, |5lsin\ 1 [ (R
22( T ]>:;/<;—§>10g|f()(x>|dx+

2z, €Gh -

or

Kis Kis

2 : 1 .
+= /log | f(Re?)| - sin0df — — (i + E) /log |f(re'?)| - sin OdO—
s T\R r
0 0

1 [ ;
__ (L _ E) /arg f(rew) - cos 0d8.
r
0

Dividing the last equality by 2R we obtain the Carleman formula with

L1 A
Ar(va):_g (ﬁ—l_ r>/10g|f(re )| - sm@d@—— (ﬁ_;> X
0

x] Flre) w—ifllfxﬁeﬁ VY ao
arg f(re oS =5 m | log f(re - 7
0

0

(cf. [8], p. 26).
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The criterion of belonging of a subharmonic function v to the class JS(v) in terms of the
Fourier coefficients ¢x( R, v):

Kis

9 .
cx(R,v) = ;/U(Rew) -sinkfdf, ke N,
0

was proved in [4]. Here we formulate it as Theorem M.

Theorem M ([4]). Let v be a growth function and let v € JS. Then the following
properties are equivalent:

(1) v e JS(v);
(2) |ex(R,v)| < Ay(BR), tor some positive A, B and for all R > r, k € N.

If f is analytic in the closure of the upper half-plane and |f(¢)] < 1, t € R, then we
obtain that log |f| € JS. To prove Theorem 1 we need the following lemmas.

Lemma 2. Let A be the complete measure corresponding to the function log |f| and A has
finite y-density. Then

27‘('2;1% |2;|sin6; < R- Ay(BR), (20)
/R(log |f()] +log | f(—)[)dz| < R - Ay(BR), (21)
o Z];R Sijf < %7(33) (22)

/R (g |(2)] + log |F(~)) | < 3.49(BR) (23)

r

for some positive A and B and for all R > r.

Proof. Inequalities (20) and (21) can be proved with the aid of the following equality, which
can be easy obtained from the definition of the complete measure (1),

//dA =20 Y Jalsing, —/(loglf( )|+ log |f(~2)])de (24)

Then we note that 27 ZZJEGR |zj|sin§; > 0 and — fr (log | f(2)] + log |f(—2)|)dz > 0. Thus
each term of the right side of (24) is not greater than the left side of (24). Let us estimate
the left side of (24),

// d\(z) = /d)\(t) = MR) — \(r) < MR) < R- Av(BR).
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Similarly, to prove (22) let us consider the equality

R
dX(z sm@ dx
”:2 / log /()| + log | (~)]) o2 (25)
Again, we may estimate the left side of (25),
D) _ AW AR )
z t T
= = — 2N(R, M) <
=[S TR A Ny <
R r
A(R) A A 3A
< 2N(R,\) < —R-~v(BR)+2 BR) < —~(BR).
<M onmy < A RoaBR) 42280 < 2R
Let us prove (23). We have
R R
dx
(log [ f ()] + log [ f(— e(log |f(z)[+log |f(=2)) | =
R

d)\

3A
/ log | f(z)] + log | f(—=x ; <R- <R- —’y(BR) < 3Ay(BR).

Lemma 3. If{z;}, z; = |z;|e'% is a finite set from G, then

R
K1 dt _ |Z]|
g t—ksm ] —=- g sinkf; — — g sinkf;,, ke NJR>r.  (26)

2;€G Z] €GRr Z] €GRr

Proof. Integrating by parts we obtain

R R
|z % dt 1 ) _
/ Z t]k sin k0, T % Z i sink0; | dt™" =
" 2z, €Gh e 2, €G
= _— Z |Z]| sin k6; + k/t_kd Z |Z]| sin k0;
ZJEGR r 2, €G

The function (1) = Ezjth |z;|¥ sin k0; has the jumps |z;|*sin k0; at the points ¢; = |z;]|.
Then the last integral can be rewritten as

ZJEGR ZJEGR

R
L[ :
E/t i (t) Z 2,172 |" sin k6 Z sin k6.
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Lemma 4. Under the assumptions of Lemma 1,

R
ET di
ax(B,f) = —ex(B. [)+4 [ | Y Z-sinkt; | —+

e 2z, €Gh
R
2 [kt k41
+— [ - Uog|f(2)[ + (=1)" log |f(—x)[)dz+ (27)
2 Tk f 0 . 2 rk K "
+—— [ log|f(re”)|-sinkOdd + —— | arg f(re"”) - coskfdf, keN, R>r.
Rk T Rk
0
Proof. Relation (27) follows immediately from (2) and (3). O
3. Proof of Theorem 1. Let (i) hold. According to the properties of T'(R,log |f]) we
have [5]
(R log 7)) = T(R.log 1) (25)

The measure A has finite y-density. This follows from (i) and (28). Further, according to

Lemma 4
|ar(R, f)] < |le(B, )] +1Qu(R, [)], k€N, R>r, (29)
where
R . ;
; t
- 2z, €Gh
) R
i / (g [ ()] + (~1)** log | f(—z) o+ (30)
2 :
—|——% / (log |f(re'?)| - sin kO 4 arg f(re'?) - cos k)do |, keN, R>r.

0

Denote the summands in the right side of (30) by Iy, I3, I5 respectively. We are going to
estimate them.
According to Lemma 3,

|| < E Z sinkf;| + |- Z |]| sin k6;

ZJEGR ZJEGR

% Z sin k6; <4 Z |s1nk0|<— Z ksin@; =4 Z sing; <

ZJEGR ZJEGR ZJEGR ZJEGR

A
<4y B on 0, < AR - ;—RV(BR) = EA~y(11%1%) < 244(BR).
m m

o EA



ONE CRITERION OF ~-TYPE FINITENESS 165

The last inequality is obtained due to (22). Further,

Z |Z]| sin kb, <— Z |sinkf;| <4 Z sinf; <2-Ay(BR).

ZJEGR ZJEGR ZJEGR

Thus
|I1] <2A4(BR) + 2Av(BR) = 4Ay(BR).

Using the inequalities log | f(2)| < 0 and log |f(—2)| <0 when x € R, we have

R
9 l’k_l
il = |2 [ S tog )| + (~1) o | f(—o))de | <

R
Rk 1
< =T | [0 171+ (<1 g (=) ] <
2 / 21 i
<2 /|1og|f I+ o f(—)])d =——/—10ng )|~ log | (—o)])de.

Then

R
2
<= /1og|f ) +log | F(—)l)de|.

Using (21) we obtain
2 2A
i< 2R Ag(BR) = 25 (80) < Av(BR),
T T

Now we estimate [5. We have

Kis

2 : ,
|5] < — / <log |f(re'?)| - sin kO + arg f(re'?) - cos k@) do| = C,
T

0

where (' is positive constant.
Hence,

Qk(R, NI < [li| + 2| + [Is] < 4A9(BR) + AY(BR) + C < Ay(BiR), keN, R>r.

According to the Theorem M |cx(R, f)| < Ayy(B2R), k € N, for some Ay > 0, By > 0 and
forall R >r, k€ N.
Returning to (29) we obtain

|ax(R, /)| < Asy(BsR), keN, R>r, (31)

where A3 > 0, By > 0.
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Let us consider ao(R, f). Using (3) we have

R T

it f) = [(og 1) —tog f=o) + 2 [arg flreyan, R>r ()

r 0
The first integral in (32) can be estimated similarly to I3,

2 [ogist —tog 17000 %] < 2| f(1og el + e i) | =

r

5

R
2 dl’
:_/1og|f )|+ log [ f(—) )=

5

Using (23) we have

2 [doslfte)) ~ tog f(-a)) "] < 2349 (BE) < 249(B )

r

The second integral in (32) does not depend on R and can be estimated similarly to Is.
Therefore
|ao( 12, f)| < Asy(BaR)

for some Ay > 0, By > 0 and for all R > r. The last inequality and (31) give (i1).
Now suppose that (ii) holds. At first we will prove that A has finite y-density. Consider

ar(R, f) =2/R (Z (@—é) Sinej) %—F

z, €EG

= /R ( ) (log | £ ()] + log | f(x)])da+

r R r R [ i
(E_7>/10g|f(re )|-s1n0d0—|—;<ﬁ—l—7>/argf(re )-cosOdf, R >r.
0 0

(33)

1
_I__
m
We denote ¥(t) = > |z;|sinf;. Then we can write

25 €EG
[ Il [ p(0)
Z: . t
/( g t;sm@j) dt:/ 2 dt
2 €Gy r
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Jaefe g

/R@b;; o 20 [ /@@tdt%f
Q/R(Z (?;>sin0j)f2(2i@dtzRfW). (34)

¢
Similarly, denoting ¢(t) = [(log|f(z)| + log |f(—x)|)dx and integrating by parts we obtain

and

R R
1 1 R 1 1 R
L (55 toslsl +ioelsear = £ [ (5 +5) dott) =
r . (35)
26t 20 fott
7R T 3
Further,
1 R\ [ I L /r R\ [ i0 _
- (E_ 7) /log|f(re )| - sin 6d6 + - (R—I— r) /argf(re ) - cos 0df =
0 0
Cy
=—+4+Cy- R where (7,(y are constant. (36)

R

Since lilgn infy(R)/R = o > 0, there exists some rq such that for all R > rq the following
—+00
inequality holds:
WR) _«a 2
T > 5 O R < av(R).
The function y(R)/ R is continuous and positive on [r;ro]. Then there exists 5 > 0 such that

Y(R)/R > § for all R € [r;ro]. Thus we have
R < 6v(R) (37)
for all R > r, where § = max{2/«,1/3}. Taking into account (33)-(36) we obtain

R R R
f):4/@dt—4]%/¢(gdt+2i§) +¥/¢(gdt+%+()g-3.
Let
‘ ‘ SR [ ()t
AR, f) = 1R / / )‘7/% _
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R

R
_ 4/ (E B 1) ;/)(t)dt 24,9 2R c,o
t 12 T

r

So A(R, f) is nonnegative as ¢ is nonpositive. Since (i7) and (37) hold, we have

01

for some A >0, B > 0 and for all R > r.
A(R, f) consists of three nonnegative terms, and we can write the inequalities

+ |C2| R < A’Y(BR)

R
2R t)dt
2R ey sR) (38)
T 3
[ewd
[
IR / . / Y0 gy < Av(BR) (39)
with A, B mentioned above, and for all R > r.
Further,
fowy, fww,  few, B, ] e
[ t(t [ [ [
= < —
/ 2 dt / 3 dt—l—/ 2 dt_2 3 dt—l—/ 2 dt
r r R/2 r R/2
Then
R R
+(BR) >4 / / Y0y >
12
o) (0 (1= [ v
R [ (t)dt Wp(t)dt p(t R [ (t)dt
>4 — > 4— >
_42 3 —|—4R/ 3 4/ 2 dt_42 3 >0
r R/2 R/2 r
That is
R
/ v(2BR) (40)

for all R > r and A, B mentioned above.
From (38) and (40) we obtain

2R 7
— 4R /
T

[ < ) (4

or
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for all R > r and some A; > 0, B; > 0.
Inequality (41) means that the measure A is of finite y-density.
Using (27) we can write

|ck(va)| < |ak(va)|+|Qk(va)|7 kENv R >,
where Qr(R, f) is given by (30). We obtain the needed estimate for |Qr(R, f)| with the aid

of reasoning given above. Then we have
lex(R, [)| < Ay(BR), k€N,

for some A > 0, B > 0 and for all R > r. According to Theorem M this is equivalent to the
relation log | f| € JS(v). Theorem 1 is proved.

4. Proof of Theorem 2. If (i) holds then according to Theorem 1
lap(R, )| < Aiy(BiR), ke{0}UN
for some positive A; , By and for all R > r, and according to Theorem M
lex(R, f)] < Agy(ByR), ke€{0}UN

for some positive Ay , By and for all R > r. Thus (i) holds, because

(R, f) = %(GMI(Rv f) —sgnk-cp(R. f)), ke

It also follows from the last equality that ax(R, f) = (ls(R, f)+{_x(R, f))/i,k € {0} UN.
So, if (ii) holds then from Theorem 1 we obtain log |f| € JS(y). Theorem 2 is proved.
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