A game characterization of limit-detecting sequences in locally compact $G$-spaces

Author
T. O. Banakh, S. I. Pidkuyko
Lviv Ivan Franko National University
Abstract
It is proved that under some mild conditions a set $S\subset X$ is strongly limit-detecting if and only if $S$ is $\omega$-controlling in $X$ if and only if $S$ is asymptotically dense in the sense that for any neighborhood $U$ of the unit in $G$ the set $US$ has bounded complement in $X$. On the other hand, $S\subset X$ is limit-detecting if and only if $S$ is 1-controlling and splittable. In its turn, a~set $S\subset X$ is 1-controlling if the product $KS$ is $\omega$-controlling for some compact countable set $K\subset G$. These results are proved with help of some infinite game resembling the Telg\'arski game characterizing $\mathcal K$-scattered properties.
Keywords
Telgarski game, asymptotically dense set, strongly limit-detecting set
DOI
doi:10.30970/ms.21.2.115-132
Reference
1. Банах Т., Підкуйко С., Здомський Л. Скільки збіжних послідовностей необхідно для виявлення розриву функції в точці, Наукові записки НТШ, 2004.

2. Banakh T., Protasov I. Color-detectors of hypergraphs, in preparation.

3. Blass A. Combinatorial cardinal characteristics of the continuum, in: Handbook of Set Theory (eds.: Foreman M., Kanamori A., Magidor M.), Kluwer, to appear.

4. Дороговцев А. Я. Математический аналиы: Сборник задач, К.: Вища школа, 1987.

5. Энгелькинг Р. Общая топология, М.: Мир, 1986.

6. Голузин М.Г., Лодкин А.А., Макаров Б.М., Подкорытов А.Н. Задачи по математическому анализу, Л.: Изд-во Ленингр. ун-та, 1983.

7. Guran I. On topological groups close to being Lindelöf, Soviet Math. Dokl. 23 (1981), 173–175.

8. Habala P., Hájek P., Zizler V. Introduction to Banach spaces, Praha: Mathfyzpress, 1996.

9. Kechris A. Classical descriptive set theory, Springer-Verlag, 1995.

10. Leif M. Om ligelig kontinuitet i uendelig, Nordisk Math. Tidskr. 24 (1976), Hf. 2, 71–74.

11. Protasov I., Banakh T. Ball structures and colorings of graphs and groups, Mathemetical Studies, Monograph Series, Vol.11. – VNTL: Lviv, 2003.

12. Telgárski R. Spaces defined by topological games, Fund. math. 88 (1975), 193–223.

13. Telgárski R. Topological games: on the 50th anniversary of the Banach-Mazur game, Rocky Mountain J. Math. 17 (1987), no 2, 227–276.

14. Tkachenko M. Introduction to topological groups, Topology Appl. 86 (1998), 179–231.

15. Ткачук В.В. Топологические приложения теории игр, М.: Изд-во МГУ, 1992.

16. Vaughan J.E. Small uncountable cardinals and topology, in: J. van Mill, G.M. Reed (eds). Open problems in topology, (Elsevier Sci. Publ., 1990) 197–216.

17. Yajima Y. Topological games and applications, in: Topics in General Topology (K.Morita, J.Nagata, Eds.), Elsevier Publ., 1989.

Pages
115-132
Volume
21
Issue
2
Year
2004
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue