Quasiisometric homeomorphisms and $p$-moduli of separating sets |
|
| Author |
golbera@macs.biu.ac.il
Department of Mathematics and Statistics, ,Bar-Ilan University, 52900 Ramat-Gan, Israel
|
| Abstract |
The quasi-invariance of $p$-module is a characteristic property
for quasiconformal mappings for $p=n$ and for quasiisometric
mappings for $p\ne n$. The theorem provide a condition
which is more general than the quasi-invariance. This condition
completely characterizes quasiisometric homeomorphisms and can be
considered as a new definition.
|
| Keywords |
quasiisometry, homeomorphism, separating set
|
| DOI |
doi:10.30970/ms.21.1.101-104
|
Reference |
1. Caraman P. $p$-capacity and $p$-modulus, Symp. Math. 18 (1976), 455--484.
2. John F. On quasi-isometric mappings, I, Comm. Pure Appl. Math. 21 (1968), 77–110. 3. John F. On quasi-isometric mappings, II, Comm. Pure Appl. Math. 22 (1969), 265–278. 4. Gehring F. W. Lipschitz mappings and the $p$-capacity of rings in $n$-space, Advances in the theory of Riemann surfaces, Princeton, University Press, 1971, 175--193. 5. Гольберг А. Л. Об одном характеристическом свойстве плоских квазиизоморфизмов, Докл. АН Украины (1994), № 12, 40–41. 6. Gold'shtein V. M., Reshetnyak Yu. G. Quasiconformal Mappings and Sovolev Spaces, Kluwer Academic Publishers Group, 1990. 7. Hesse J. A $p$-extremal lenght and $p$-capacity, Ark. Mat. 13 (1975), 131--144. 8. Ziemer W. P. Extremal length and $p$-capacity, Michigan Math. J. 16 (1969), 43--51. |
| Pages |
101-104
|
| Volume |
21
|
| Issue |
1
|
| Year |
2004
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |