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The quasi-invariance of p-module is a characteristic property for quasiconformal mappings
for p = n and for quasiisometric mappings for p # n. The theorem provide a condition which is
more general than the quasi-invariance. This condition completely characterizes quasiisometric
homeomorphisms and can be considered as a new definition.
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KpazunHBapmaHTHOCTE P-MOYJIA ABISETCA XapPaKTEPUCTHYECKUM CBOHCTBOM KBA3WKOH-
bOpMHBIX 0TOGPpAKEHNN AT p = N U KBA3WH3OMETPHIECKIX OTOGpakeHnl mpu p # n. Teope-
Ma obecriednBaeT ycaoBue 6ojee oOIIee, 9eM KBazMMHBAPUAHTHOCTE. DTO YCIOBHE TOJHOCTHIO
XapaKTepuayeT KBasuM3oMeTpHUIecKne 1 TOMeOMOPMU3MEL B MOXKET PacCMaTPUBATHCA KaK HO-
BOE Olpe/IeIeHNeE.

1. Let G and G* be two bounded domains in R™, n > 2.

A homeomorphism f: G — G* is called quasi-isometric if for any =,z € GG and y,t € G*
the inequalities

lim sup M < K, limsup S y) = @)

2—T |$_Z| t—y |y_t|

<K, (1)

hold, with a constant K, 0 < K < oo, depending only on GG and G*. (See [6], [2], [3].)

We now define a quasi-isometry of a homeomorphism in other terms (geometric or mod-
ular). Let S* be a family of k-dimensional surfaces S in R*, 1 < k < n — 1 (curves for
k =1). Sis a k-dimensional surface if S: D, — R* is a continuous image of the closed
domain D, C R*.

The p-module of S* is defined as

M,(S%) = inf/,op dv, p>1,

Rn
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where the infinum is taken over all Borel measurable functions p > 0 and such that

/,okdak21

S

for every S € S*. We call each such p an admissible function for S*.

A ring domain D C R” is defined as a finite domain whose complement consists of two
components Cy and C;. We set Iy = 0Cy and Fy = 9C. Then I}y and [ are simply the
components of dD. For convenience of notations, we always assume that oo € (7.

We say that a curve v joins the boundary components in D if v lies in D, except for
its endpoints, and if one of these endpoints lies in Fy and the other one in Fj. A compact
set Y is said to separate the boundary components of D if ¥ C D and if Cy and (] lie in
different components of C'Y.. Denote by I'p the family of all locally rectifiable curves + that
join the boundary components of D and by ¥p the family of all compact piecewise smooth
(n — 1)-dimensional surfaces ¥ that separate the boundary components of D.

The following proposition was given in [4] (see, also, [6]) in the terms of p-capacity. On
the hand, the p-capacity and the p-modulus M,(I'p) as is well-known (see, e. g., [7]) are
equivalent.

Proposition. Let 1 < p < oo, p # n and let a homeomorphism f: G — G* satisfy:

Q' My(I'p) < My(f(I'p)) < QpM,(I'p) (2)

for any ring domain D C G with (), not depending on D.
Then f is quasi-isometric.

The relations between the p-capacities and the p-moduli of families of separating sets
were obtained by W. P. Ziemer [§8] and by P. Caraman [1]. W. P. Ziemer has considered the

condition
/ pdo,_1 > 1

S

and established that
My(Tp) = ML (3p).

It follows from Caraman’s paper that
M,(Tp) = M,™"(Sp),
assuming a metric p to be admissible if

/,op_1 do,_1 > 1.

S

In the case f,op_l do,_1 > 1 we have

M,y(I'p) = M2, (¥p). (3)

p—1
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In addition, the following relations hold:

l<p<n < n<pn-1)/(p—1) < oo,
p=n <= ph-1/(p-1)=n,

n<p<oo <= l<pn—1)/(p—1)<n.

Denote by m(A) = m,(A) the n-dimensinal Lebesgue measure of a set A. Our main
result is the following

Theorem. Suppose that f: G — G* is a homeomorphism. Then the following conditions
are equivalent:

1°. f is quasiisometric;
20, For fixed real number «, 3,v,8 such that

n—l<a<f<n and n—1<y<d<n

" n<a<fB<m-17%/(n—-2) and n<y<d<(n-—17%(n-2),

there exists a constant K such that for any ring domain D C (G the inequalities

MP(f(Sp)) < K [m(D™)]" ™" MZ(Sp), (4)

M (Sp) < K [m(D)])" " M (f(Ep)). (5)
hold, where D* = f(D).

Proof. The implication 1° = 2° follows from Proposition and Holder’s inequality. Indeed,
for p,q, s,t such that p < ¢ and s < t we have from (2) the inequalities

M (F(Tp)) < [m(D)]'F My(F(Tp)) < Q, [m(D")])5* My(T'p), (6)
and
M (Tp) < [m(D)]'T Mi(£(T'p)) < Qi [m(D)])T Mi(£(I'p)). (7)

Suppose that

_gqn—1) _
SR

p(n —1) t(n—1)

B _S(n—l)

t—1 " s —1

Substituting these values into (6)—(7) and applying (3) we obtain inequalities (4)—(5).

The inverse implication 2° = 1° will be proved only for inequality (5). The second
inequality in (1) follows in the same way if one applied f~! insteed of f.

Fix a point « € D and a ball B"(x,r) of the radius r so that 0 < r < dist (x,0D). Let
z1 be a point of the (n — 1)-dimensional sphere S"~(x,r). For p > n — 1, p # n we have

M,(Xp) = Cifzy —2|"7". (8)
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Here C; depends only on p and n. According to Lemma 3 ([4]) we obtain the estimate

Mp(f(3p)) < Caf(a1) = ()",

where (' is a positive constant which depends only on n and p.

Substituting (8) and (9) into (5) yields
|2y — 2|70 < Oy | fay) = f(a)| 0.

Thusforn —1 <y <d<n
|71 — |

)= ] =
and forn <y <d<(n—1)?/(n—2)
) = F@] _

|21 — | -

where M = CJ"~"" depends only on v, § and n. This completes the proof of Theorem.

Remark. A similar result for the planar case with a = v = 1 was given in [5].
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