On the logarithmic derivative of a meromorphic function

Author
A. A. Kondratyuk, I. P. Kshanovskyy
Faculty of Mechanics and Mathematics ,Lviv Ivan Franko National University
Abstract
We will prove that the inequality $$ m\left(r,\frac {f'}{f}\right)\le \log ^{+}\left(\frac {T(\rho,f)}{r}\frac {\rho}{\rho -r}\right)+4.8517, $$ where $\rho>r$, holds for all meromorphic functions such that $f(0)=1$. This is an improvement of the earlier results by Gol'dberg and Grinshtein, Benbourenane and Korhonen.
Keywords
logarithmic derivative, meromorphic function, asymptotic estimate
DOI
doi:10.30970/ms.21.1.98-100
Reference
1. Гольдберг А.А., Гринштейн В. О логарифмической производной мероморфной функции, Мат. зам. 19 (1976), № 4, 525–530.

2. Benbourenane D., Korhonen R. On the growth of the logarithmic derivative, Computational Methods and Functional Theory. 1 (2001), № 2, 301–310.

3. Hayman W., Kennedy P. Subharmonic functions. V.1. Academic Press, London etc., 1976.

4. Hinkkanen A. Sharp error term in the Nevanlinna's theory , Complex differential and functional equations (Mekrijarvi) Univ. Joensuu Dept. Math., Rep. Ser. (2003), № 5, 51–79.

5. Jankowski M. An estimate for the logarihmic derivative of meromorphic functions, Analysis 14 (1994), 185–194.

Pages
98-100
Volume
21
Issue
1
Year
2004
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue