On the logarithmic derivative of a meromorphic function |
|
| Author |
kshanovskyy@ukr.net
Faculty of Mechanics and Mathematics
,Lviv Ivan Franko National University
|
| Abstract |
We will prove that the inequality
$$
m\left(r,\frac {f'}{f}\right)\le \log ^{+}\left(\frac
{T(\rho,f)}{r}\frac {\rho}{\rho -r}\right)+4.8517,
$$
where $\rho>r$, holds for all meromorphic functions such that
$f(0)=1$. This is an improvement of the earlier results by
Gol'dberg and Grinshtein, Benbourenane and Korhonen.
|
| Keywords |
logarithmic derivative, meromorphic function, asymptotic estimate
|
| DOI |
doi:10.30970/ms.21.1.98-100
|
Reference |
1. Гольдберг А.А., Гринштейн В. О логарифмической производной мероморфной функции, Мат. зам. 19 (1976), № 4, 525–530.
2. Benbourenane D., Korhonen R. On the growth of the logarithmic derivative, Computational Methods and Functional Theory. 1 (2001), № 2, 301–310. 3. Hayman W., Kennedy P. Subharmonic functions. V.1. Academic Press, London etc., 1976. 4. Hinkkanen A. Sharp error term in the Nevanlinna's theory , Complex differential and functional equations (Mekrijarvi) Univ. Joensuu Dept. Math., Rep. Ser. (2003), № 5, 51–79. 5. Jankowski M. An estimate for the logarihmic derivative of meromorphic functions, Analysis 14 (1994), 185–194. |
| Pages |
98-100
|
| Volume |
21
|
| Issue |
1
|
| Year |
2004
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |