Universal maps of $k_\omega$-spaces |
|
| Author |
Ivan Franko Lviv National University,Uniwersytet Rzeszowski
|
| Abstract |
We introduce counterparts of the spaces $\mathbb R^\infty$
and $Q^\infty$ in the
classes of spaces that are countable direct
limits of compacta of prescribed
weights. The counterpart of the
space $Q^\infty$ is a countable direct limit
of Tychonov cubes, and
that of $\mathbb R^\infty$ is a countable direct limit of
Dranishnikov
universal spaces. A universal map, which is a generalization of
the
universal map between $\mathbb R^\infty$ and $Q^\infty$ defined by
the
second-named author, between these spaces is
constructed.
|
| Keywords |
countable direct limit, Tychonoff cube, universal map
|
| DOI |
doi:10.30970/ms.21.1.71-80
|
Reference |
1. R.Heisey, Manifolds modeled on ${\Bbb R}^\infty$ or bounded weak-$^*$ topologies, Trans. Amer. Math. Soc. 206 (1975), 295--312.
2. T. Banakh, Parametric results for some classes of infinite-dimensional manifolds, Ukr. Mat. J. 43 № 6 (1991), 853–859.(Russian) 3. K. Sakai, On ${\Bbb R}^\infty$-manifolds and ${\Bbb Q}^\infty$-manifolds, Topol. Appl. 18 (1984), 69--79. 4. K. Sakai, On ${\Bbb R}^\infty$-manifolds and ${\Bbb Q}^\infty$-manifolds, II: Infinite deficiency, Tsukuba J. Math. 8 (1984), 101--118. 5. Vo Thang Liem, On infinite deficiency in $\mathbb R^\infty$-manifolds, Trans. Amer. Math. Soc. 288 (1985), 205--226. 6. K. Sakai, Combinatorial infinite-dimensional manifolds and $ {\Bbb R}^\infty$-manifolds. Topology Appl. 26 (1987), no. 1, 43--64. 7. K. Sakai, Each $ R^\infty$-manifold has a unique piecewise linear $ R^\infty$-structure. Proc. Amer. Math. Soc. 90 (1984), no. 4, 616--618. 8. M.M. Zarichnyi, On universal maps and spaces of probability measures with finite supports. Mathematical investigations, 78–82, 108, Pr. Lviv. Mat. Tov., 2, Lviv. Mat. Tov., Lviv, 1993. 9. M.M. Zarichnyi, Free topological groups of absolute neighborhood retracts and infinite-dimensional manifolds. Dokl. Akad. Nauk SSSR 266 (1982), no. 3, 541–544.(Russian) 10. M. M. Zarichnyi, Symmetric products that are finite-dimensional manifolds. Visnik Lviv. Derzh. Univ. Ser. Mekh.-Mat. (1985) No. 24, 65–69.(Ukrainian) 11. T. Banakh, K. Sakai, Free topological semilattices homeomorphic to $ {\Bbb R}^\infty$ or ${\Bbb Q}^\infty$. Topology Appl. 106 (2000), no. 2, 135--147. 12. T. Banakh, K. Sakai, Characterizations of $(\mathbb R^\infty,\sigma)$ or or $({\Bbb Q},\Sigma)$ -manifolds and their applications, Topol. Appl. 106 (2000), no. 2, 115-134. 13. M.M. Zarichnyi, Functors generated by universal maps of injective limits of sequences of Menger compacta, Matematika, V. 562, Riga, Latvian University, 95–102. 14. E. V. S cepin, Functors and uncountable degrees of compacta. Uspekhi Mat. Nauk, 36 (1981), no. 3, 3–62. (Russian) 15. M. M. Zarichny, Infinite-dimensional manifolds which arise from the direct limits of ANRs. Uspekhi Mat. Nauk 39 (1984), no. 2, 153–154. (Russian) 16. A. Teleiko, M. Zarichnyi, Categorical topology of compact Hausdorff spaces. – Lviv: VNTL Publishers, 1999. 263 pp. 17. A.N. Dranishnikov, Universal Menger compacta and universal mappings. Mat. Sb. (N.S.) 129(171) (1986), no. 1, 121–139. (Russian) 18. E. S cepin, Sur les applications continues des cubes de Tihonov. C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 4, 257–260. 19. T. Banakh, D. Repov s, On linear realizations and local self-similarity of the universal Zarichnyi map, Preprint. 20. M. Zarichnyi, Strongly countable-dimensional resolvents of sigma-compact groups. Fundam. Prikl. Mat. 4 (1998), № 1, 101–108. |
| Pages |
71-80
|
| Volume |
21
|
| Issue |
1
|
| Year |
2004
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |