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We introduce counterparts of the spaces R and Q° in the classes of spaces that are
countable direct limits of compacta of prescribed weights. The counterpart of the space Q>
is a countable direct limit of Tychonov cubes, and that of R 1s a countable direct limit of
Dranishnikov universal spaces. A universal map, which is a generalization of the universal map
between R and Q°° defined by the second-named author, between these spaces is constructed.
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Beogsitcs amagorn mpoctpancTB R™ u (J°° B Kaaccax TPOCTPAHCTB, SABISIOMINXCH TTPS-
MBIME TIpeedaMil KOMITAKTOB MPeIINCAaHHOrO Beca. AHamorom mpocTpaHcTBa (Q°° sBiseTcs
CYETHBIN TPAMON MPee] THXOHOBCKUX KyOOB, aHAJIOTOM IR — CYeTHBIN TPAMON Mpe/esa YHI-
BepcadbHLIX TpocTpaucTB [lpanummankoBa. [locTpoeno yHuBepcaabHoe oToOpaKeHNe MeXK Ty
STUMHU TPOCTPAHCTBAMH, ABAAIONIeECA aHAJOTOM YHUBEPCATBLHOTO OTOOpaKeHna Mex 1y R u
@, oTmpeleIeHHOT O BTOPBIM aBTOPOM.

1. Introduction. Recall that a topological space X is called a k,-space if X is the direct
limit of a sequence (X;) of compact Hausdorff spaces and embeddings.
The space R is the direct limit of the sequence

RRx{0} > RxR>RxRx{0}>RxRXxR—....

The space Q™ is the direct limit of the sequence

Q—o0Qx{0}=>0QxQ—=>0QxQ@x{0}=>0QxQxQ—...,

where () denotes the Hilbert cube. It is known that ()*° is homeomorphic to the space
(7*,bw), where bw stands for the bounded weak topology (see [1]).

The theory of R*-manifolds and ()°°-manifolds has been developed by different authors
(see, e.g. [3]-[13]). The following characterization theorem for the spaces R* and Q* is
proved by K. Sakai [3].

Theorem 1.1. (Sakai [3]) A countable direct limit X of a sequence of metrizable (respec-
tively metrizable finite-dimensional) compact spaces is homeomorphic to Q> (respectively
R*) it and only if the following holds: for every compact metrizable (respectively finite-
dimensional compact metrizable) pair (A, B) and every embedding f: B — X there exists
an embedding f: A — X that extends f.
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In [13] a special map @: R® — Q% is defined and it is proved that this map can be
uniquely characterized by its universality properties.

It is easy to find a counterpart of the space Q°° that plays the same role for the class of
compact Hausdorff spaces of higher weight as ) does for the class of compact metrizable
spaces. Namely, we replace the Hilbert cubes by the Tychonov cubes in the definition of
Q> (note that perhaps the first example of such a space is considered in [2]). However,
a construction of a counterpart of the space R* is considerably less straightforward. It is
based on universal maps of Dranishnikov universal spaces.

In this note we introduce generalizations of the spaces )> and R* and prove character-
ization theorems for these spaces. We also define and characterize universal maps of these
spaces.

The manifolds modeled on universal spaces introduced in this note will be considered in
another publication.

The authors are indebted to the referee for useful remarks and suggestions.

2. Preliminaries. All spaces are assumed to be Tychonov, all maps continuous.

By w(X) we denote the weight of a topological space X.

By I we denote the unit segment [0, 1]. For 7 > w, the space I7 is a Tychonov cube of
weight 7. Below, 0 € [” also denotes the point with all coordinates equal to zero.

Lemma 2.1. Let (X,Y') be a compact Hausdortf pair and w(X) = 7. For every embedding
f:Y — I% for some o, there exists an embedding f: Y — [*x 17 such that f(x) = (f(x),0)
for every x € Y.

Proof. Since [” is an absolute extensor, there exists a continuous extension f': X — [
of the map f. Denote by X/Y the quotient space of X obtained by identification of all
the points of ¥ and let ¢: X — X/Y be the quotient map. There exists an embedding
i: X/Y — I” such that i(Y) = 0. Put f(z) = (f'(x),7 0 q(2)). O

By dimension we mean the covering dimension dim. Given n € w, we denote by AE(n)
the class of absolute extensors in dimension n, i.e. spaces X with the following property:
for any map f: A — X defined on a closed subset A of a compact Hausdorff space Y with
dimY < n there is an extension f: Y — X of f.

A space X is a k,-space if X = @Xi, for an increasing sequence Xy C Xy C ... of its
compact Hausdorff subspaces.

A map f: X — Y is said to be (m,n)-soft if for every commutative diagram

Ao X

|

7Yy,

where 7 is a paracompact space of dimension < n, A is a closed subset of Z of dimension
< m, there exists a map h: Z — X such that fh = ¢ and h|A = ¢ (see [17]). The (n,n)-
soft maps are called n-soft. A map is soft if we drop the dimension restrictions in the above
definition.

Finally, 2 means ‘homeomorphic to’.
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3. Characterization theorems. In this section we introduce and characterize spaces [(*)

and Lf,a).

3.1 Spaces /(®). Denote by A the set of all nondecreasing sequences of uncountable cardinal
numbers. Given a = (o;) € A, define the space 1{®) as the direct limit of the sequence

170 — 170 x {0} — 170 x [0 — [20 x [0 x {0} = 70 x [* x [ — ...

Recall that, for any cardinal number 7, by 77 we denote the successor of 7. Given
a=(a;) € A, let & = sup{a} | o € w}.

Theorem 3.1. A k,-space X is homeomorphic to I®) if and only if the following two
conditions hold:

1. X = @Xi, where w(X;) < &, for every i;

2. for every compact Hausdortf pair (A, B) with w(A) < & and every embedding f: B —
X there exists an embedding f: A — X such that f|B = f.

Proof. By the definition, the space I®) satisfies condition 1). That I{®) also satisfies condi-
tion 2) is a consequence of Lemma 2.1.

Suppose now that a k,-space X satisfies conditions 1) and 2). Let (X;) be the direct
system from condition 1). We naturally identify every [0 x [™ x --. x [™ with the subspace
190 x [0 x -« x [T x {0} of the space [%0 x [T x --- x [T x [T+ Also, every space
I70 % [7 x ... x [* is naturally identified with a subspace of the space 1(®). For the sake
of brevity, we put Y; = [0 x [0 x -+ x [%,

We follow the proof of Sakai’s characterization theorem.

Let ny = 1. There exists an embedding fi: X,, — Y,,,, for some m;. Note that
w(Y,,) = oy, and there exists an embedding ¢;: Y,,, — X that extends the embedding
' Au(X,,) = X, C X. Since X is a k,-space, there exists ny > n; such that ¢(Y,,,) C
X.,.- By Lemma 2.1, there exists an embedding f5: X,,, — Y,,,, for some my > my, such
that f291|Yy, = ly,,, . Proceeding similarly, we obtain a commutative diagram of spaces and
embeddings,

Xy e X, = X (3.1)

[ oA

Yo, C Yo, C Yo, ©

1 2 3

from which we conclude that

O

Corollary 3.2. If aq,a5 € A are such that &; = @&, then the spaces ™) and 1(®2) are
homeomorphic.
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A space X is said to be an absolute extensor for (finite-dimensional) compact Hausdorff
spaces, written X € AE (X € AE(fd)) if for any (finite-dimensional) compact Hausdorff
pair (A, B) and any map f: B — X there is an extension of f over A. It easily follows from
Characterization Theorem 3.1 that (®) ¢ AE.

Proposition 3.3. Let X € AE and X = @Xi, where X1 C Xy C ... be a sequence of
compact Hausdorff spaces embeddable in 1(®). Then X x [(®) = [(@),

Proof. We have
XX[(Q):(@Xi) X(@[QO o X[ai):@XiX[ao YR A

Let (A, B) be a compact Hausdorff pair and w(A) < ay, for some k. Given an embedding
f: B — X x I one can find i such that f(B) C X; x % x --- x [, Since X x [(?) ¢
AE, there is an extension f': A — X x I(®) of f. There exists j > i such that f(A) C
X; x [0 x - x [%. Let | = max{j + 1,k}. Denote by ¢: A — A/B the quotient map
and let g: A/B — [+ x -+ x [*" be an embedding such that g(B) = 0. Then the map
fi X, xI20x . x [* defined by the formula f(a) = (f'(a), gq(a)), a € A, is an embedding
that extends f. O

Recall that a space is said to be locally self-similar if there exists a base of its topology
consisting of sets homeomorphic to the whole space.

Proposition 3.4. The space I®) is a locally self-similar, topologically homogeneous space.

Proof. First show that I(®) is topologically homogeneous. Let z,y € I®. Proceeding as
in the proof of the characterization theorem for I(®), we represent I{®) as the direct limit
of a sequence (X;) of compact Hausdorff spaces, where X; = {x}. In diagram (3.1) one
can assume that fi(z) = y. Then f = h%mfz is a homeomorphism with the property that
flz) =y.

We are going to show that the space [(®) is locally self-similar. A subset Y C [7 =
1,0, 1]; is said to be cubicif Y is of the form [].__[a;, b:], for some segments [a;, b;] C [0,1];,
1 < 7. In the sequel, we will use the following simple observation. For any closed cubic subset
Y of I” and any neighborhood W of Y, there exists a closed cubic neighborhood Y of ¥ in
17 such that Y; C W.

Now, let € I® and let U be a neighborhood of z. Then x € %1, for some i; € N.
There exists a closed cubic neighborhood V; of = in %% such that V; C U. Using the above
remark, find a sequence (V) of subsets with the following properties:

1. V; is a cubic subset of [%iots;
2. Vi 1s a closed neighborhood of V; in %0+,
3. V]‘+1 cU.

Let V = @% It follows from conditions 2) and 3) that V' is a neighborhood of x and
V C U. We leave to the reader an easy verification that the space V satisfies the conditions
of the characterization theorem for (%),

O

Proposition 3.5. The spaces [(®) and 1(®)\ {*} are not homeomorphic.
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Proof. Suppose the contrary and let h: [(®) — ™)\ {x} be a homeomorphism. There exists
i € N such that + € ¥, = [% x [ x ... x [* (see the proof of Theorem 3.1). Then
Vi\ {x} = U, (Yinh™'(Y))), ie. Y;\ {*} is a o-compact space and * has a countable

character in Y;, a contradiction. O

One can similarly prove that, for any nonempty compact subset &' C (%) the spaces [(®)
and )\ K are not homeomorphlc

For n € N, by exp, X we denote the n-th hypersymmetric power of X (according to
the terminology of [14]). The elements of exp, X are the nonempty subsets of X of car-
dinality < n. The topology of exp, X is the quotient topology of X™ under the natural
map (L1,...,2,) — {x1,...,2,}. Given a k,-space X = @Xi, for an increasing sequence
X1 C Xy C ... of its compact subspaces, one can easily verify that exp, X = @exan
(see, e.g., [16]).

It is proved in [15] that exp, @ = Q. The following proposition demonstrates that
this result does not have a counterpart for the spaces I(*).

The proof of the following proposition is suggested by the referee.

Proposition 3.6. Let a € A and n > 2.
The spaces I1'®) and exp, I'®) are not homeomorphic.

Proof. Note that, for some uncountable 7, the Tychonov cube [7 is a retract of the space
I®), Then also the space exp, I7 is a retract of the space exp, I(*). Assuming that 1(*) and
exp, 1(®) are homeomorphic, we see that then exp, I®) € AE. Therefore, exp, I7 € AE,
which contradicts to the results of [14]. O

Note that results similar to Proposition 3.6 can be also proved for some other functors of
finite degree in the category of Tychonov spaces (see [16]).

3.2. Space 1. A. Dranishnikov [17] proved that for every n = 0,1,2,... and every
cardinal 7 there exists a map f7: D] — I” with the following properties:

(i) D7 is a compact Hausdorff space of weight 7 and dimension n;
(ii) DI € AE(n —1);
(iii) f7is (n — 1)-soft and (n — 2,n)-soft.

Given o = (o) € A, construct a space 1) as follows. We put ¥; = Dy, and define
embeddings s;: Y; — Yy as follows. We regard Y; as a subset of [°¢, then the graph of the
map foiy,: Y = Dyiy — 1% is a subset of 1% x %, In its turn, the set /%" x [ is identified

with the subset [ x 1% x {0} of I* x [* x [*+1. Let

Qi+l \/ _ e+l ol ol QAip1 ~ JA41
S Yipy = Dyl = I x [ x [ 22 ]

be a Dranishnikov map. Since f5:F3 is (2i + 31, 2i + 1)-soft, there exists a map s;: ¥; = Yij,

such that f2/+1 i(y) = (v, f22+1( )),0), y €Y.
Let 11 = @(K, si). In the sequel, we identify every Y; with the corresponding subspace

in LE) ).
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Remark 3.7. Since the diagram

o 51 a9 52
Dl D2

el

[ozl( [Ozg(

is commutative, it determines the map of the direct limits, f(*): 1 = @),

Theorem 3.8. A k,-space X is homeomorphic to 18 if and only if the following two
conditions hold:

1. X = @Xi, where X; is a finite-dimensional compact Hausdorff space with w(X;) < &,
for every i;

2. for every finite-dimensional compact Hausdorff pair (A, B) with w(A) < & and every
embedding f: B — X there exists an embedding f: A — X
such that f|B = f.

Proof. First, show that the space 19 satisfies properties 1) and 2) (with X replaced by
[La)). Suppose that (A, B) is a finite-dimensional compact Hausdorff pair with w(A) < &
and f: B — 11 is an embedding. Since 15 a k,-space, there exists ¢« such that f(B) C
Y, C 1£ There exists J > 1 such that w(A) < aj4; and j > dim A 4+ 1. Then there exists
amap f': A— [% x [ extending f: B — Y, CY; C % x I* and, by Lemma 2.1, there
exists an embedding f”: A — [% x [% x [?/+! that extends

i B=Y,CY; CIv x I =1%x1%x{0} CIY x % x [*+,

Since the map f;_lffl is (j — 1,74 1)-soft and dim A < j—1, there exists a map f: A — D;ﬁl
making the diagram

C Gy+1
Y D

B
|
A

I 19 x [%5 x [*9+1

commutative. Obviously, f is an embedding.
If X satisfies properties 1) and 2), then, applying back and forth arguments similar as in

the proof of Theorem 3.1 one can show that X = Lf,a). We leave the details to the reader. O

Corollary 3.9. If ay,a9 € A are such that &; = d-, then the spaces 189 and 172 are
homeomorphic.

Proposition 3.10. Let X € AE(fd) and X = @Xi, where X1 C X3 C ... be a sequence
of compact Hausdorff spaces embeddable in Lf,a). Then X x Lf,a) — Lf,a).

Proof. An easy modification of the proof of Proposition 3.3. 0
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Note that the space R* is an AE. The following proposition demonstrates that this is
no longer true for its counterparts 1. Recall that a space is said to be strongly countable-
dimensional if it can be represented as a countable union of its closed finite-dimensional
subspaces.

Proposition 3.11. The space I&) is not an AE.

Proof. Let f: D** — 1) be an embedding (here D = {0,1} C [0,1]). Assuming, on the
contrary, that 1) € AE we conclude that there exists an extension f:Io — 15 of f- By
a result of Shchepin [18], there exists an embedding g: [t — I“* such that fg is also an
embedding. Then fg(/“') turns out to be a countable union of its closed finite-dimensional
subspaces, fg(1“1) = U2, fg(I°1) N D7i. This contradicts to the fact that the space [“! is

not strongly countable-dimensional. O

(o)

A counter%nart of Proposition 3.5 holds for the space I, ’: for any nonempty compact
subset K C [wa), the spaces Lf,a) and Lf,a) \ A are not homeomorphic.

4. Universal maps. Given a sequence o = (o;) € A, denote by K(«) (respectively
K.(a)) the class of all (respectively finite-dimensional) compact Hausdorff spaces X with
w(X) < a&. Given classes C, D of compact Hausdorff spaces, denote by (C,D) the class of
maps f: X — Y, where X €C, Y € D.

The category of maps is defined as follows. Its objects are the maps of compact Hausdorft
spaces. Given two maps, f: X — Y and f': X’ — Y’, a morphism ¢: f — g consists of pair
of morphisms 7;: X — X’ and i5: Y — Y’ such that f'i; =iy f. If 41,45 are inclusion maps,
we write [ C ¢g. If 11,15 are homeomorphisms, we say that f and ¢ are homeomorphic and
write f = g.

Given classes C, D of compact Hausdorft spaces, we say that a map f: X — Y is
strongly (C, D)-universal if for every pair of maps (g, h) with g,h € (C,D), h C g, and every
embedding 7: h — f there exists an embedding j: ¢ — f that extends 1.

Theorem 4.1. There exists a unique, up to homeomorphism, strongly (IC(E,Q), K -universal
map @: Lf,a) — (@),

Proof. Let pr;: 1(®) x [1®) — [(®) denote the projection onto the i-th factor. Denote by ¢
the composition
h Pry

J(@) « [(@)—— [(a)

Y

where h is a homeomorphism.
We are going to show that the map ¢ is strongly (lCﬁ,a),lC(a))—universal. Consider a
commutative diagram

X ——A—"= )

|k

Y ~—B 2% @

Y

where f,g € (/C(E,a),/C(a)). The map pry hf@iy: A — I®) can be extended to a map
r': X — I such that (X \ A) N+ (A) = @ and +/|(X \ A) is an embedding. This can
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be easily deduced from Theorem 3.1. Also there is an embedding j,: Y — [(®) such that
J2| B = iz. The map r = (jo,7'): X — I®) x [(®) is an embedding that extends i,.
Since X is compact, there exists { € N such that
Lo@(D") D h=H(r(X));
2. 11(A) C D
3. the map ¢|D;": D" — o(D;") is dim X-soft.

By dim X-softness of f(®), there exists a map j;: X — 1) such that @5 = A~ and
J1|A = i1. Obviously j; is an embedding for wthich ¢j; = j29.
The uniqueness up to homeomorphism of the strongly (IC(E,Q), K()-universal map can be

verified by the back and forth argument (see the proof of Theorem 3.1).
O

We say that an open surjective map f: X — Y is locally self-similar if for every x € X
and every neighborhood U of z there exists a neighborhood V' of = such that V' C U and
fIV:V = f(V) is homeomorphic to f (see [8]).

Recently, in [19] it was proved that the universal map ¢,: R® — Q° is not locally
self-similar. This proof works also in our case. Therefore, we obtain the following

Theorem 4.2. The map ¢: 15— 1) s not locally self-similar.

5. Open problems.
Problem 5.1. Find a topological characterization of the space I7 x Q* for 7 > w.

Note that the space I7 x ()*° is homeomorphic to the direct limit of the sequence
I" 51" x {0} = I" xIY = 1" x [Yx{0} = I" x [“x [¥ — ...

More generally, one can also consider the problem of topological characterization of the
direct limits of the sequences

[0 = 170 x {0} = [P0 x [0 = [7 x [T x {0} = [ x [ x [T — ...,

where oy > w and 79,71, ... are arbitrary cardinals.

In [9], it is proved, in particular, that the free topological group in the sense of Graev
of the Hilbert cube is homeomotphic to ()*°. The following question was formulated by the
second author during Tiraspol Topological symposium in 1987.

Question 5.2. Is the free topological group in the sense of Graev of the Tychonov cube I7
homeomorphic to the space ™), where a = (7,7,...)?

In [20], the universal map ¢: R* — Q* is realized as a homomorphism of topological
group.
Question 5.3. Is it possible to find a counterpart of this result for the universal map of 1)
to [(®)?

Question 5.4. Is the space 1) locally self-similar?
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In [11] the authors characterized topologically the bitopological space (Q*,Y), where ¥

stands for the radial pseudointerior of the Hilbert cube @ = [[:2,[0, 1];,

7=31=1 J J
Let a = (7,7,...), where 7 > w, and
= 1 1
) = UH {—.,1— —}
j=3 ieT J J1i

Problem 5.5. Find a topological characterization of the bitopological space

10.

11.

12.

13.

14.

15.

1 1
i T |51 -5, =

1ET
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