Factorization of Fredholm operators (in Ukrainian) |
|
| Author |
Lviv Ivan Franko National University
|
| Abstract |
We consider a factorization problem for Fredholm operators along the
chains of orthogonal projectors in Banach operator algebras and describe a
class of such algebras in which the factorization problem has a solution.
|
| Keywords |
Fredholm operator, Banach operator algebra, factorization problem
|
| DOI |
doi:10.30970/ms.20.2.185-199
|
Reference |
1. Крейн М.Г. Об одном методе решения линейных интегральных уравнений первого и второго рода // ДАН СССР. – 1955. – Т.100, № 2. – С. 413–416.
2. Гохберг И.Ц., Крейн М.Г. О факторизации операторов в гильбертовом пространстве // Acta scien. math. – 1964. – V. 25, № 1-2. – P. 90–123. 3. Гохберг И.Ц., Крейн М.Г. Теория вольтерровых операторов в гильбертовом пространстве и ее приложения. – М.: Наука, 1967. 4. Gohberg I., Goldberg S., Kaashoek M.A. Classes of linear operators, Vol.2. – Basel; Boston; Berlin: Birkhaser Verlag, 1993. 5. Сахнович Л.А. Факторизация операторов в $L_2(a,b)$ // Функц. анализ и его прил. -- 1979. -- Т.13, №~3. -- С.~40--45. 6. Ben-Artzi A., Gohberg I. Lower upper factorizations of operators with middle terms // Journal of Functional Analysis – 1988. – V. 77. – P. 309–325. 7. Gohberg I. Factorizations of semi-separable operators along continuous chains of projections // J. Math. Anal.Appl. – 1988. – V. 133. – P. 27–33. 8. Milman M.H. A factorization on the semi-infinite interval I: General Theory // J. Math. Anal.Appl. 1988. – V. 131. – P. 127–156. |
| Pages |
185-199
|
| Volume |
20
|
| Issue |
2
|
| Year |
2003
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |