Modification of the Lie-algebraic scheme and approximation error estimations |
|
| Author |
Department of Applied Mathematics and Computer Science, Lviv Ivan Franko National University
|
| Abstract |
A new modification of the Lie-algebraic scheme for solving partial
differential equations with initial and boundary conditions based
on constructing quasirepresentations of the Heisenberg-Weyl
algebra operators involving boundary conditions is proposed.
Approximation errors for the modified scheme are evaluated.
|
| Keywords |
Lie-algebrais scheme, approximation error estimation, Heisenberg-Weyl algebra operator
|
| DOI |
doi:10.30970/ms.20.2.179-184
|
Reference |
1. Bihun O., Luśtyk M. Numerical tests and theoretical estimations for a Lie-algebraic scheme of discrete approximations, Visnyk of the Lviv University. Series Applied Mathematiсs and Computer Science. 6 (2003)(to appear).
2. Bihun O. H., Luśtyk M. S. Approximation properties of the Lie-algebraic scheme, Matematychni Studii 20 (2003), № 1, 85–91. 3. Calogero F., Franco E. Numerical tests of a novel technique to compute the eigenvalues of differential operators, Il Nuovo Cimento 89B (1985), no 2, 161–208. 4. Luśtyk M. Lie-algebraic discrete approximation for nonlinear evolution equations, Mathematical Methods and Physicomechanical Fields 42 (1999), no 1, 7–10. 5. Marcinkowska H. Dystrybucje, przestrzenie Sobolewa, równania rózniczkowe, Wydawnictwo Naukowe PWN, Warszawa, 1993. 6. Митропольский Ю. А., Прикарпатский А. К., Самойленко В. Гр. Алгебраическая схема дискретных аппроксимаций линейных и нелинейных динамических систем математической физики, Укр.мат.журн. 40 (1988), № 4, 453–458. 7. Самойленко В. Гр. Алгебраическая схема дискретных аппроксимаций динамических систем математической физики и оценки её точности, Асимптотические методы в задачах мат. физики. Киев, Институт математики АН УССР, 1988. С.144–151. |
| Pages |
179-184
|
| Volume |
20
|
| Issue |
2
|
| Year |
2003
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |