Generalized derivations and Fourier transform of polynomial ultradistributions

Author
K. Grasela
Institute of Mathematics ,Cracow University of Technology ,Cracow, Poland
Abstract
Algebras of symmetric ultradistributions on the spaces of functions of infinitely many variables are investigated. Linear representation of such algebras as convolution algebras of symmetric tensor products are constructed. Generalized derivations and Fourier transform of such algebras are described.
Keywords
derivation, Fourier transform, polynomial ultradistribution
DOI
doi:10.30970/ms.20.2.167-178
Reference
1. Berezanski Yu.M. and Kondratiev Yu.G. Spectral Methods in Infinite-Dimensional Analysis, Naukova dumka, Kyiv, 1988.

2. Lopushansky O.V., Zagorodnyuk A.V. Hilbert spaces of analytic functions of infinitely many variables, Annales Polonici Mathematici, 81 (2003), № 2, 111–122.

3. Dineen S. Complex Analysis on Infinite Dimensional Spaces, Springer, 1999.

4. Grothendieck A. Produits tensoriels topologiques et espaces nucléaries, Mem. Amer. Math. Soc. 16 (1955).

5. Jarchow H. Locally Convex Spaces, B.G.Teubner, Stuttgart, 1981.

6. Hörmander L. The Analysis of Linear Partial Differential Operators, Springer, 1983.

7. Mityagin B.S. Nucl\'erit\'e et autres propri\'et\'es des espaces de type $s$, Trudy Mosk. Mat. Ob-va\/ 9 (1960), 317--328.

8. Pietsch A. Nukleare Localkonvexe Räume, Springer, 1965.

9. Shaefer H. Topological Vector Spaces, Springer, 1971.

10. Lions J.L., Magenes E. Problemes aux Limites non Homogenes et Applications, Paris: Dunod, v.3, 1970.

11. Sebastiano di Silva, On some classes of locally convex spaces, Matematika, 1 (1957), 60–67.

12. Grasela K. Ultraincreasing distributions of expotential type, Univ. Iagel. Acta Mathematica, (2003) (in print).

Pages
167-178
Volume
20
Issue
2
Year
2003
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue