A set-theoretic approach to complete minimal systems in Banach spaces of bounded functions

Author
L. Halbeisen
Department of Pure Mathematics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland
Abstract
Using independent families from combinatorial set theory, it is shown that for every infinite cardinal $\kappa$, $\ell_\infty(\kappa)^*$ contains a subspace which is isomorphic to a Hilbert space of dimension $\mathfrak{2}^\kappa$. This provides a new proof for the first step in the construction of complete minimal systems in Banach spaces of bounded functions.
Keywords
infinite cardinal, Hilbert space, bounded function
DOI
doi:10.30970/ms.20.2.162-166
Reference
1. Plichko A. A Banach space without a fundamental biorthogonal system, Doklady Akademii Nauk SSSR, 254 (1980), № 4 798–801 (in Russian); translation in Soviet Mathematical Doklady, 22 (1980), № 2, 450–453.

2. Godun B. V., Kadets M. I. Banach spaces without complete minimal systems, Funktsional'nyi Analiz i Ego Prilozheniya 14 (1980), № 4, 67–68 (in Russian); translation in Functional Analysis and its Applications, 14 (1980), № 4, 301–302.

3. Davis W. J., Johnson W. B. On the existence of fundamental and total bounded biorthogonal systems in Banach spaces Studia Mathematica, 45 (1973), 173–179.

4. Godun B. V. Complete biorthogonal systems in Banach spaces, Funktsional'nyi Analiz i Ego Prilozheniya, 17 (1983), № 1, 1–7 (in Russian); translation in Functional Analysis and its Applications 17 (1983), № 1, 1–5.

5. Rosenthal H.~P. On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $L^p(\mu)$ to $L^r(\mu)$, Journal of Functional Analysis, 4 (1969), 176--214.

6. Kunen K. Set Theory, an Introduction to Independence Proofs, North Holland, Am­st­erdam (1983).

7. Hausdorff F. Über zwei Sätze von G. Fichtenholz und L. Kantoro­vitch, Studia Mathematica, 6 (1936), 18–19.

Pages
162-166
Volume
20
Issue
2
Year
2003
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue