Orthogonal retractions and $M$-equivalence

Author
N. M. Pyrch
Ivan Franko Lviv National University, Faculty of Mathematics and Mechanics
Abstract
Two Tychonoff spaces are $M$-equivalent if their free topological groups are topologically isomorphic. We introduce the notion of orthogonal retracts in a Tychonoff space and as a~development of Okunev's construction show that every pair of orthogonal retracts leads to a~pair of $M$-equivalent spaces.
Keywords
orthogonal retraction, M-equivalence, Tychonoff space
DOI
doi:10.30970/ms.20.2.151-161
Reference
1. Aleksandryan R.A., Mirzahanyan E.A. General topology, Moscow, Vysshaya shkola, 1979.

2. Baars J., de Groot J., van Mill J. and Pelant J. An example of $l_{p}$-equivalent spaces which are not $l_{p}^{\ast }$-equivalent, Proc. Amer. Math. Soc., 119 (1993), no 3, 963--969.

3. Engelking R. General topology, Warszawa: PWN, 1977.

4. Guran I.Y., Zarichnyi M.M. Elements of the theory of topological groups, Kyiv, 1991.

5. Okunev O.G. A method for consructing examples of M-equivalent spaces, Topology Appl. 36 (1990), 157–171; Correction, Topology Appl. 49 (1993), 191–192.

6. Okunev O.G. M-equivalence of products, Trudy Mosk. Math. Obsch. 56 (1995), 192–205.

7. Pestov V.G. Universal arrows to forgetful functors from categories of topological algebra, Bull. Austr. Math. Soc. 48 (1993), 209–249.

8. Pyrch N., Zarichnyi M. On a generalization of Okunev's construction, Algebraic structures and their applications, Proceedings, 346–350.

9. Tkachenko M.G. Topological groups for topologists: Part 2, Bol.Soc.Mat. Mexicana(3) 6 (2000), 1–41.

10. Tkachuk V.V. Duality with respect to the $C_{p}$-functor and cardinal invariants of Souslin type, Mat. Zametki, 37 (1985), № 3, 441--451.

11. Tkachuk V.V. Homeomorphisms of free topological groups do not preserve compactness, Mat. Zametki, 42 (1987), № 3, 455–462.

Pages
151-161
Volume
20
Issue
2
Year
2003
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue