Orthogonal retractions and $M$-equivalence |
|
| Author |
Ivan Franko Lviv National University, Faculty of Mathematics and Mechanics
|
| Abstract |
Two Tychonoff spaces are $M$-equivalent if their
free topological groups are topologically isomorphic. We introduce
the notion of orthogonal retracts in a Tychonoff space and as
a~development of Okunev's construction show that every pair of
orthogonal retracts leads to a~pair of
$M$-equivalent spaces.
|
| Keywords |
orthogonal retraction, M-equivalence, Tychonoff space
|
| DOI |
doi:10.30970/ms.20.2.151-161
|
Reference |
1. Aleksandryan R.A., Mirzahanyan E.A. General topology, Moscow, Vysshaya shkola, 1979.
2. Baars J., de Groot J., van Mill J. and Pelant J. An example of $l_{p}$-equivalent spaces which are not $l_{p}^{\ast }$-equivalent, Proc. Amer. Math. Soc., 119 (1993), no 3, 963--969. 3. Engelking R. General topology, Warszawa: PWN, 1977. 4. Guran I.Y., Zarichnyi M.M. Elements of the theory of topological groups, Kyiv, 1991. 5. Okunev O.G. A method for consructing examples of M-equivalent spaces, Topology Appl. 36 (1990), 157–171; Correction, Topology Appl. 49 (1993), 191–192. 6. Okunev O.G. M-equivalence of products, Trudy Mosk. Math. Obsch. 56 (1995), 192–205. 7. Pestov V.G. Universal arrows to forgetful functors from categories of topological algebra, Bull. Austr. Math. Soc. 48 (1993), 209–249. 8. Pyrch N., Zarichnyi M. On a generalization of Okunev's construction, Algebraic structures and their applications, Proceedings, 346–350. 9. Tkachenko M.G. Topological groups for topologists: Part 2, Bol.Soc.Mat. Mexicana(3) 6 (2000), 1–41. 10. Tkachuk V.V. Duality with respect to the $C_{p}$-functor and cardinal invariants of Souslin type, Mat. Zametki, 37 (1985), № 3, 441--451. 11. Tkachuk V.V. Homeomorphisms of free topological groups do not preserve compactness, Mat. Zametki, 42 (1987), № 3, 455–462. |
| Pages |
151-161
|
| Volume |
20
|
| Issue |
2
|
| Year |
2003
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |