Rings with the Kazimirsky condition and rings with projective socle |
|
Author |
zabavskii@gmail.com1, oleh.romaniv@lnu.edu.ua2
Department of Mechanics and Mathematics
Ivan Franko National University,
Lviv, Ukraine
|
Abstract |
We construct the theory of diagonalizability for matrices over Bezout rings of stable range
1 with the Kazimirsky condition. It is shown that a ring of stable range 1 with the right (left)
Kazimirsky condition is an elementary divisor ring if and only if it is a duo ring.We describe the
conditions under which a proper finite homomorphic image of a commutative Bezout domain
is a ring with projective socle.
|
Keywords |
Bezout ring; Kazimirsky condition; elementary divisor ring; stable range; unit stable range;
projective socle; maximal ideal; Kasch ring; PS-ring; PS-module; unit-central ring; duo ring
|
DOI |
doi:10.15330/ms.51.2.124-129
|
Reference |
1. G. Baccella, On &-semisimple rings. A study of the socle of a ring, Comm. Alg., 8 (1980), ¹10, 889–909.
2. V. Camillo, W.K. Nicholson, Z. Wang, Left quasi-morphic rings, J. Alg. Appl., 7 (2008), ¹6, 725–733. 3. H. Chen, Rings related to stable range conditions Series in Algebra 11, World Scientific, Hackensack, NJ, 2011. 4. R.R. Colby, Rings which have flat injective modules, J. Alg., 35 (1975) 239–252. 5. N.I. Dubrovin, On noncommutative rings with elementary divisors, Reports of Institutes of Higher Education Math., 11 (1986), 14–20. 6. G.A. Garkusha, FP-injective and weakly quasi-Frobenius rings, J. Math. Scien., 112 (2002), ¹3, 4303– 4312. 7. R. Gordon, Rings in which minimal left ideals are projective, Pacific J. Math., 31 (1969), ¹3, 679–692. 8. M. Henriksen, On a class of regular rings that are elementary divisor rings, Archiv Math., 24 (1973), ¹1, 133–141. 9. I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc., 66 (1949) 464–491. 10. D. Khurana, G. Marks, A.K. Srivastava, On unit-central rings, Springer, Advances in Ring Theory, Trends in Mathematics, Birkhauser Verlag-Based/Switzerland, 2010, 205–212. 11. G. Marks, Duo rings and Ore extensions, J. Alg., 280 (2004), ¹2, 463–471. 12. W.K. Nicholson, J.F. Watters, Rings with projective socle, Proc. Amer. Math. Soc., 102 (1988), ¹3, 443–450. 13. M. Satyanarayana, Rings with primary ideals as maximal ideals, Math. Scand., 20 (1967), 52–54. 14. A.A. Tuganbaev, Rings of elementary divisors and distributive rings, Russ. Math. Surv., 46 (1991), ¹6, 219–220. 15. B.V. Zabavsky, M.Ya. Komarnytsky, Distributive elementary divisor domains, Ukr. Math. J., 42 (1990), ¹7, 890–892. 16. B. V. Zabavsky, Diagonal reduction of matrices over rings, Mathematical Studies, Monograph Series, V.XVI, VNTL Publishers, Lviv, 2012. 17. B. Zabavsky, O. Pihura, Bezout morphic rings, Visnyk Lviv Univ., 79 (2014), 163–168. |
Pages |
124-129
|
Volume |
51
|
Issue |
2
|
Year |
2019
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |