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Systems of linear differential equations that allow for dimension decrease are considered.
Growth estimates for meromorphic vector-solutions are obtained. An essentially new feature is
that there are no additional constraints for the growth order of the system coefficients.

Let M be the field of meromorphic in C functions, let £ be the ring of entire functions,
& C M. Consider the system

n

:Zaﬂwk, ajr€&, j=1,...,n (1)
k=1

dwj

dz

According to |1, Chapter 1,§ 5|, every vector-solution W (z) = (wy(z),...,w,(2)), z € C, of
the system (1) has components w; € £, j =1,...,n. Applications of the Nevanlinna theory
to analytic theory of differential equations are widely known, see [2]-[4]. In particular in the
proof of Theorem 1 we follow the approach from [2].

Let A be the coefficients matrix of the system (1):

S1 P 0 0
a2 1 S9 D2 c. 0
A= Bo(Z) =] e y  Qjk, S5y Pi eé. (2)
ap—-11 Qn-12 OGp—-13 ... Pn—1
Qp,1 Ap 2 an3 . Sn

In [2] the properties of vector-solutions of the system (1), (2) were studied. Here the
coefficients a; x, s;, p;, were entire functions of finite growth rate. In this paper a significantly
new feature is that we do not pose any restrictions on the growth rate of the coefficients and
solutions. The scale from [4] is used in Theorem 1 to measure an arbitrarily growth rate of
positive functions.

The major idea that was used in the proof by [2] was to decrease the system dimension.
This transformation leads to the system with meromorphic coefficients and meromorphic
components of a vector-solution (see (42), (43)). In Theorem 2 we obtain the estimates for
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the growth rate of meromorphic vector-solutions for the system of linear differential equations
with meromorphic coefficients.

Let us use the standard notations of the theory of meromorphic functions [6]. Landau
symbols O(...), o(...) are used in this article at r — +oo. Growth rate of f € M is described
by Nevanlinna characteristics m(r, f), T(r, f); remind

1 27 )
m(r, f) = %/0 In" | f(re*)|dp, In*a =max(Inx,0), x> 0.

If f is an entire function then T'(r, f) = m(r, f). Let us denote D(r, f) to be any of the
characteristics T'(r, f), m(r, f). If f, g € M, then [6, pp. 44, 45|

D(r.f+g) < D(r,f) + D(r,g) + In2,
f
D<T7fg) éD(r,f)—FD(r,g), T(rag) <T(T,f)+T(T,g)+O(].) (3)
As F let us denote some sets of intervals on [0, 400) with a finite sum of lengths (mes E <
+00). A function f € M has a finite growth order p[f] if

InT
p=rplf]l= limsupM < +o0. (4)
r—400 lnr

If f € M then the following relations are known to be true ([6, pp. 122,125, 131])

)
m(r,T) =O(lnr), if p[f] < +o0, k=1,2,...; (5)
m (r, ?) =O0(n*T(r,f)+1nr), r € B, if p[f] = +00, k=1,2,... (6)

If F(f1,..., fn) is a rational function of f; € M, degy, F' = k;, j = 1,...,n, then ([7])

T F(fio o ) <Y BTG f) +O() ™

Jj=1,..,

if R(f1,..., fn)is a polynomial in f; € M, degy, R = k;, j =1,...,n, then

m(r, R(f1,..., fa)) < Z kym(r, ;) + O(1). (8)

P(z,f(2 a1t fi+...+a a . . _
If F(z) = ng%zi; — GQ;}CMZ._Z;;E;QEO, where f, a;; € M; ay,asm Z 0; d = max(m,t)

and P(z,w),Q(z,w) are relatively prime as polynomials in w over the field M then ([8])

T(r.F) =dT(r.f) + O3 T(r.ay)). (9)

Let W(z) = (w1(2),...,wn(2)), wj € M, j=1,...,n. Denote

T(r,W) = max T (r,w;). (10)
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If the system (1), (2) has transcendental coefficients, then the components of its vector-
solutions W(z) = (wi1(2),...,w,(2)) can be entire functions of infinite growth order plw;]
(see (4)). There are several scales for measuring growth order of the functions with the infi-
nite growth rate. In the paper [9] for growth rate of linear differential equations solutions
p-th iteration order p,(f) was used. In the article [10] [p, g]-order oy, 4 (f) was applied. The
definitions of these orders do not describe an arbitrary growth rate. This means that there
exists a function f € £ that has an infinite [p, g]-rate and p-th iteration order for arbitrary
p € N. There is no such a drawback in the scale proposed in [11] and adopted for vari-
ous applications in [4]. As ® let us denote the class of positive unbounded non-decreasing
functions ¢ : (0, +00) — (0, +00) such that p(e') is slowly growing

Ve > 0:

—1, t— +4o0. (11)

Thus if f € M, ¢ € ® then the growth orders are defined as:
T(r.f)
0 —(’0(6 ), oL[f] = limsup

. T(r, f
o lf] :hgiip oy 2 I suj p2(r.f)) II(ITT )). (12)

From (11) it follows Ve > 0 : ¢((e)¢) = (1 + o(1))p(e'), t — +oo; if we denote z = €'
then the previous iimplies

Voe®d Ve>0: o) =(1+0())p(x), z> x. (13)
For the functions ¢ € ® it holds ([4])

p(Inz™)

Voe® Ym>0 Vk>0: -
x

— +00.

In particular, Vo € ® Vm >0: z < o }(Ina™), z > x. Thus
Voe® Vm>0: Inx <Inp '(Ina™), x> x,. (14)
Due to the result of Filevych ([12]) we have:

(Vf €&, plfl =+00) Bp€®): allf] =1. (15)

)

This means that the function f has a finite positive growth order ag [f]. This statement allows
estimating the growth order of vector-solutions of the fundamental system of solutions of
(1), (2) via the growth order of its coefficients.
If o}[f] = 0 < 400 then taking into account (12) we have Ve > 0 : o(T(r, f)) <
Inro*e, r > rg. Then
ollfl=0 = T(rf)<¢ '(Inr"™), ¢>0, r>r. (16)
If g € M and Ug[g] = a < oo then by taking into account (12) we obtain Ve > 0 :
(7)) < Inr**s r > ry. Thus
0

oolgl=a = T(r,g) <lng '(Inr**®), >0, r>r. (17)
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Denote, see (2)(j=1,...,n; t=1,....,n—j+1)

St Db 0 0
i1t St+1 Pt 0
d(A)= | : (18)
Atyj—2t Otyj—2t41 Gppj—2t42 - Pi4j—2
i1t Apj—1,4+1 At45-1t4+2 .- St4j—1
n+l1—j
doy =1, Hj(A)= > dj(A). (19)
t=1

The main result of this article is the following

Theorem 1. Let the system (1), (2) be such that all coefficients a;y, sj, p; € €, and m €
(0,1, ,n—1}
0ol Hpm(A)] > o0ldp(A)], j=1,2,...,n—m—1; t=1,....n—j+1 (20)

Then there exist no m+1 linear independent meromorphic vector-solutions Wy (z) = (wg1(2),
..o, Win(2)), of the system (1), (2) such that

oL Wil < 00[Hpm(A)], k=0,1,...,m. (21)

The following Theorem 2 is similar to Theorem 1, though they do not follow one from
another. If in the system (1), (2) the coefficients a;y, s;, p; € M and P is the set of poles
of all coefficients, then according to [1, Chapter 1, 85| every vector-solution has components,
that are analytic functions in C\ P. We are interested in vector-solutions W (z) = (wi(2),. ..,
wy,(2)) with components w; € M, j=1,...,n.

Theorem 2. Let the system (1), (2) be such that all coefficients a;j, s;j, pi € M, and
(me{0,1,--- ,n—1},j=1,2,--- ,n—m—1)

m(r,d;i(A)) = o(m(r, H,—n(A))), T¢E;, t=1,....n—j5+1 (22)

Then there exists no m + 1 linear independent meromorphic vector-solutions Wy(z) =
(W1 (2),y .-y wEn(2)), k = 0,1,...,m, of the system (1), (2) such that In(r - T'(r,Wy)) =
o(m(r,H,_m(A))), r & E; (whose growth rate is restricted by growth rate of the coeffi-
cients).

Remark 1. If we apply more precise estimates of logarithmic derivative (5) for important
sub-classes of meromorphic functions then the following can be obtained: if the coefficients
of the system (1), (2) are such that

m(r,d;;(A)) =0(nr), j=1,2,....n—m—1;, t=1,...,n—j+1;

m(r, H,—m(A)) # O(lnr), (23)

then the system has no more than m linearly-independent meromorphic vector-solutions
Wi, k=1,2,...,m of finite growth order. The relations (23) hold true if e.g. d;;(A) are any
rational functions and H,,_,,(A) is transcendent function. In fact, a transcendent function
grows faster than any rational function |6, pp. 49, 50].
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Example 1. Consider the system w] = wy, w) = e?*w, + wy. The matrix of the system is
A= (6X82Z %) > d11<A) = O, d12 = 1, HQ(A) = —622, TTL(T’, HQ(A)) = Zm(r, €z) = % ([13, P.
25]). We have: 0 = m(r,d11(A)) = m(r,d12(A)) = o(m(r, Hy—¢(A))). In this example n = 2,
m = (0. Thus from Theorem 2 it follows that the system does not have meromorphic vector-
solutions W such that In™ T'(r, W) + In7 = o(m(r, Hy_o(A))), © € E. This system has two
linearly-independent meromorphic vector-solutions Wy = (e, ee® ), Wy = (7", —e%e ™).
For entire function expexp z ([13, p. 26]) T'(r,e®") = m(r,e®) ~ W, r — +o0o. Taking
into account (9) it follows T'(r,e*e=¢") = T(r, e ) + O(T(r,e*)) ~ W, r — 400. Thus
keeping in mind the definition W5, W, we obtain T'(r, W;) 7z, T — +00, 7 =1,2.
Thus 7 ~ In(r - T(r, W;)) # o(m(r, Hy(A))), r = +oo because m(r, Hy(A)) ~ 2, r — +o00.

~ o
(2m37r)

Example 2. The system w] = wy, wh = wy(1 + €*) has the matrix A = () | 4:); H1 =
Hy 1(A) =1+4+¢* n=2m=1 m(r,H(A) = m(r,e® +1) = m(r,e’) + O(1) ~ I,
r — 4o00. A fundamental system consists of two linearly independent meromorphic vector-
solutions. According to Theorem 2 this fundamental system has no more than one mero-
morphic vector-solution W such that In™ T'(r, W) + Inr = o(m(r, Hi(A))), r ¢ E. This
solution is W; = (1, 0). The second linearly independent solution of the fundmental system
is Wy = (eez, ezeez). Similar to Example 1 T'(r, W5) ~ W, In* T(r,Wo)+Inr ~7r, r —
+o00. Thus r ~ In(r - T'(r,Ws)) # o(m(r, Hi(A))), r — +o0, because m(r, Hi(A)) ~ I,
r — 400.

Let us consider the vector h(z) = (hq, h, ..., h,) where h; € M. Denote

S1 — h1 P1 0 v 0
as Sg—hy P - 0
QoA ) =1, QuAR) = | ... , (24)
Ap—1,1 ag—12 Akg—13 --- Pr—1
a1 Ak 2 a3 oo Sk — hk

k=1,2,...,n. By using (24) we have (dy = si)

S1 — hl D1 0 N 0 0
as Sg—ho  po - 0 0
Qk = —thk,1 i P =
Ak—1,1 Ag—12 Akg—13 ... Sk—1— hi—1 pr—
Q1 Q.2 ags ... Ak k—1 Sk
S1 — hl P1 0 ce 0 0
as So—hy P9 . 0 0
= —hpQr—1 — Qr—2hp—1dip + |- - - =
ag—1,1 ag—-12 Qg-1,3 Sk—1  Pk-1
Qg1 Qg2 Qg3 Ak k-1 Sk
k—1
= =dpi(A) = > Qi(A Whiprdi—i—1i12(A), dogi1(A) = 1. (25)
i=0

Lemma 1. The determinant Q(A, h) can be represented as

k—2
Qk(A,h) = dyi(A) = dp_11(A)h + Y djn(A) Py, k=1,2,....n, (26)
j=0
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where h = (hy,hs ..., h,); Pj is a polynomial in functions hy and d,s(A), j +1 <t < k,
j+2<s<krv< k: of degree at most 1 for every hy, d,.

Proof of Lemma 1. Taking into account the definitions (24), (18) we have (dyy = 1)
Qi(Ah) = 51— hy = di — dothy, Qa(A ) = doy — diihy — doi(dizhy — hihg) = doy —
dithy — do1FPoa, Q3(A,h) = d31 — dyhy — hoQ1(A, h)diz — h3Q2(A, h) = d31 — dahs +
di1(hahs — hadis) + doi (dizhihe — hidas + dishihs — hihohs) = d3i — daihs + dii Pig + do1 Pos.
The assumptions of the lemma preconditions for the polynomials FPyy, Pi3, Foz hold true.

Assume that the statement of the Lemma are proved for all @;, i =1,...,k — 1. Let us
prove it for Qx, k > 4. By substituting into (25) the decompositions @); of the form (26),
after simple transformation we obtain (dp 41 = 1)(k > 4)

k—3
Qr = dp1 — hy, <dk—1,1 — dg—9,1hp—1+ Z dj1Pj,k—1> — Qrhody—23 — Qohid—12—

Z < i1 — di—11h; + Z d1 P >hi+ldk—i—1,i+2 = dp1 — hpdp—11—

k?z?

_Q1h2dk 2,3 — Q()hldk 1,2 — Z Z d]l-Pj zhz+1dk i—104+2 — 21 - ZQ +Zga

1=2 j=

Z Zd]l j k— 1hl<:_dk 21hk 1hl<: dﬁf Zdj

1

ot (27)
Z Z il z+1dk 1—1,742 = Z dzlp'2 ks
2 =2
k= def
Z - dz 1, lh hz+ldk i—1,4+2 — Z dz 1, IP 1 ka
3 i—2
Quhady o3 = dyihady 5 — donhihady_ 3 g= di Py + doy Py
Qohidi—12 = dorhidi—12 o d01P0 w don =1, Qo=1,
k—21i—2 k—4 k—2
Z Zd lf)jzhz—l-ldk i—1,i+2 — Z d]l Z szhz—l-ldk i—1,0+2-
=2 j= 7=0 =542

From induction hypothesis about polynomial properties P;;_1 and the definitions of the
polynomials 7. s =1,2,...,5, j=0,1,...,k=2,it follows that P7) are some polynomials
in hy and d,s, 7+1<t<k, 74+2<t< k, v < k of degree no more than 1 in every
h¢, d,s. By grouping the summands that contain d;;, 7 =0,1,...,k — 2 we obtain

Z+Z—Z—Q1h2dk 23 — Qohidg- 22difzd]1 iy (28)
1 2 3

where P7; are some polynomials in iy and dys, j+1<t <k, j+2<t<k v<kof
degree no more than 1 on every hy, d,s. After substitution of (27), (28) into the expression
for Q) and grouping the summands that contain d;i, j =0,1,...,k —2 we obtain (26). O

Proof of Theorem 1. The case m = n—1 will be considered in a more general form. Consider
the system (1) with the coefficients ay; € £ (condition (2) may not be satisfied). Let SpA =
aj1 + as + ... + any = Hi(A) be the trace of matrix A of the system (1). Let us prove
that the system (1) does not have m + 1 = n linearly independent vector-solutions Wy, =
(W1, - - ., WEyp) such that

00SpA] > ol Wil oy, k=1,...,n. (29)
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Assume that there exist n linearly independent vector-solutions Wj, for which (29) holds true.
Then Wy, k= 1,...,n, is the fundamental system of solutions for (1) with the determinant

D(z) satisfying the equality %l((:)) = SpA. Then

m(r,SpA) =m <7“, ll))(z) ) © O(W*T(r,D)+1Inr), r¢E. (30)

Taking into account the definition of D(z) and the estimate (7) we obtain:

(10)

T(r,D) < >  T(rw,)+0(1) <n® max T(r,Wi) +0(1). (31)

k=1

-----

1<k, j<n

From (29), (16) we have o(T'(r,Wy)) < Inr?*¢ ¢ > 0. Let 0 = maxoy, k =1,...,n.
Then T(r,Wy) < ¢ Y(Inr°*¢), e >0, k = 1,...,n, and by taking into account (31),
T(r,D) = O(p ' (Inr°*¢)), &> 0. Then from (30) it follows (K = const > 0)

m(r,SpA) < K(In" T(r, D) +Inr) (1<4) 2K (Inp '(Inr7"9)), r € E. (32)

If r > mes E then 3r; € [r, 2r] \ E. Since the function SpA is entire then the functions
m(r,SpA), Inp~t(Inr°"¢) are increasing. So we have:

m(r, SpA) < m(ry,SpA) < 2K(Inp~ (ln r7te)) <
<2K(Ing H(In(2r)7%9)) < 2K (Ing H(Inr?t2%)), 7 > 1y, &> 0. (33)

)
Therefore m(r, SpA) = O(In =1 (r°*%)), r>ry, > 0. So

— o+2¢e (13) - O T <€
gO(@m(T’SpA)) _ gD(eO(Ingp Hnrot? ))) p (1 + 0(1))@(611“‘0 Hnpot2 )) _
= (1+o0(1))Inr7 7> 7.

By taking into account the definition Ug[SpA] and the fact that for the entire function
m(r,SpA) = T(r,SpA) we obtain o)[SpA] < o + 2¢. Thus 0)[SpA] < ¢ = maxoy, k =
1,...,n, which contradicts (29).

Suppose now that in (2) all p; #0, j=1,...,n— 1L If W = (wy,...,w,) is a non-trivial
meromorphic vector-solution of the system (1), (2) then from matrix (2) structure it follows
that wy # 0.

Let m = 0. Then n — m = n,

Hy m(A) = Hy(A) = dpi(A). (34)
Assume that there exists a non-trivial meromorphic solution W = (wy, ..., w,,) of the system
(1), (2) such that

o € ol W] < oO[H,(A)] € . (35)

Let us rewrite the system (1), (2) as:

wy(s1 — wi/wy) + prwy =0,
wyaz1 + wa (s — wy/wa) + wapy = 0, (36)
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This system has a non-trivial solution W (z). So (24) @,.(A, hg) = 0, where ho= (ho1, - . ., hon),
hoj = wj/w;, j =1,...,n. From Lemma 1 it follows

(26)

n—2
0= Qu(A ho) = du1(A) = dur1(Ahon + Y dji(A) Py, (37)
=0

where P}, are some polynomials in functions ho = w)/w, j+1 <t < n, and d,5(A4), v <
n, 7+2 < s < n, of degree no more than 1 in every of hy;, and d,,. Thus taking into account
(34) we have

n—2
H,(A) = dp_11(A)hon — Y dji(A)Pjy.
j=0

From this equality and properties of the polynomials P;, it follows:

mir B () Sm ()« ¥ mndy)+0() €

j=1 1<j<n—1,
) 1<t<n—j+1 (38)
gO( 1n+T(r,wj)+ln7">+ >, m(rdy), r¢E.

1<t<n—j+1
Inequality (20) for m = 0 implies

def

Bit = ogldj] < o0[Ho(A)] S a, j=1,....n—=1; t=1,...,n—j+1 (39)

of , (39 : . . :
Let us denote max f3;; o I5; <) a. For the entire function dj(A) the following equality
T(r,d;r) = m(r,d;;) holds. Keeping in mind (17), (39) this gives us:

m(r,dj;) < Inp H(Inr?te), ¢ > 0. (40)
From (10), (35) it follows
(10) (35),(16)
T(rw;) < T(r,W) < o Inr"™), >0, r> . (41)

From (38), (41), (14), (40) we obtain (K = const > 0) m(r, H,(A)) < K - (Inp~ ' (Inr7+¢)+
+Inp ' (In7#*9)) < 2K In o~ (Inrmax(@f)+e) - & B Similar to (33) we obtain:
m(r, H,(A)) = O (Inp~'(In rma"("’ﬂ)“a)) , T >19, €>0;

eO(ln @~ 1(In pmax(e,8)+2e)) (em(r,Hn(A))) —

3

m(r, H (4)) 2

(& =

g0<€O(1n @~ 1(In rmax(f’ﬁ)-&-%))) (

< (1 I 0(1))90(6111gpfl(lnrmax(oﬁpr%) _ (1 + 0(1)) lnrmax(oyﬁ)-i-QE’ r>7.

From this estimate, from (12) and from the fact that for entire function m(r, H,(A)) =
T(r, H,(A)) we conclude that o [H,(A)] < max(c, ), which contradicts (35), (39).

Let 0 < m < n — 1. Suppose that there exists m + 1 linearly-independent meromorphic
vector-solutions Wy = (wg1,...,Wkn), kK = 0,...,m of the system (1), (2) such that (21)
holds. One of these m + 1 solutions e.g. Wy we denote by U, Wy = U = (uy,...,u,) =
(wo1, - - -, Won). Any of the remaining m meromorphic vector-solutions is denoted by W =
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(wy, ..., wy,). Since U is a non-trivial meromorphic vector-solution of the system (1), (2) then
uy # 0. Let us describe the transformation from the system (1) with coefficient matrix (2) of
the dimension n to the system of differential equations with a coefficient matrix of the form
(2) and dimension n — 1.

For every of m meromorphic vector-solutions W = (wy, ..., w,) of the system (1), (2) let
us assign the corresponding vector

wq wi1U2 wWiUn

V= (v1,v9,...,0,) = | —, wy — e, W
Uy Uy Uy

_ 0
), v = u ;éO (42)

From (1), (2), (42) it follows that these m vectors V' (42) are the solutions of the system
[2, formulae (3,9)—(3,13)]

V] = vapr Juq,
vy = Va(S2 — prug/ur) + pavs,

....................................... (43)
n—1
V), = Ua(Qp2 — P1Un/U1) + D QniUk + Sy,
k=3
whose coefficients matrix has the form
0 pi/w 0 ... 0 So —prug/u;  p2 0 ... 0
Q B = asp —prug/uy s3 py ... 0 ' (44)
: Bl -----------------------
0 An2 — P1ln /U1 An3 Gpa ... Sp
Lemma 2. The following relations hold true (dp j12(A) = 1)
ho1(B) = djp(A 2, 1<j<n—2
djvk 1( 1) jk( )7 k > ) J n (45>

dji(By) = dpp(A) + 39 Qr(A h)djipsa(A), j=1,2,...,n—1,
where h = hy = (u}/uq, ..., u,/u,) = (wy, /wor, . .., W,/ Won)-

Proof of Lemma 2. If k > 2, then the first of equations (45) follows from the definition of
d;,—1(B1) and matrix By (44). If k = 2 then

J

U2 P2 0 ce 0
us S3 P3 .o 0
(44) P1
dj 1(31) == dJQ(A> - u_ ..................... = dJQ(A)
1
i 43 G4 - Py
Uj+1 Gj+13 Gjt1d - Sjtl
Uus Ps 0 N 0
Uy S4 P4 N 0
p1u2d p1p2 Pp1u2
— i—1,3 e = Qj2 — X
Uy Uy Uy
u; Aj4 ajs5 - Dj
Uj+1  Aj414  Qj+15 - Sjtl
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Uy P4 0 N 0
Us S5 D5 ce 0
Pip2 P1p2
Xd],1 3+ U—U3d],2’4(A) — P3| e =
1 1
Ui 45 46 .- Py
Ujt1 G415 Aj416 - Sjtl

J
u
= djs(A) + Z(—l)k :lelpz o Pedj—k k2 (A).

It is known [2| that (—1)*“Epipy...pp = Qr(A,h), h = (uy/uy,...,u,/u,). So we

ul

obtain (45). O
The matrix B; (44) has the form (2). Taking into account (43), (42) each of m vectors

def

)/1 — (U27U3"°7U’n> - (U127U13,...,'U1n> (46>
is a solution of the system of differential equations
Y]/ = B,Y1, (47)

whose dimension is n — 1.

By utilizing one solution U = (uy,...,u,) of the previously known m + 1 meromorphic
vector-solutions of the system (1), (2) we decreased the dimension of this system by 1
and obtained the system (47), (44) that has m meromorphic vector-solutions (46). Let
Y11, Yia, . .., Y1, be meromorphic vector-solutions of the system (47), (44) obtained in the
described above way (Y] is one of these solutions). Since m+ 1 meromorphic vector-solutions
Wo=U = (u1,...,u,), W; = (wj1, ..., wjn), u,wjy 0, j =1,--- ,m of the system (1), (2)
are linearly independent, we obtain that m meromorphic vector-solutions Yi1, Yo, ..., Y1, of
the system (47), (44) are also linearly independent (Y7 = (vi2,v13,...,v1,), v12 # 0). From
(42), (46), (10), (7) we obtain

det (42),(7)

T(r,Y1) = max T(r,v;) < Z T(r,w;;)+ O(1). (48)
7=2,3,...,n
0<t<m,
1I<ysn
Then W,; = (wj1, . .., win), T(r,W;) (10 max (rywi;); ©=0,1,...,m;
j=1,..., n
ZT(T, w; ;) <n max T(r,w; ;) =nT(r,W;); (49)
j=1,..., n
j=1
m n (49) ™
Z T(r,w;;) < ZnT(r, Wi) <n(m+1) max T(r,W;).
=0 j=1 0 1=0,1,....m
Thus from (48) it follows
max 7' (r, Y?) o  max (r,Y1¢) = O(l_gnlax T(r, WJ) (50)

Under transformation (42) m + 1 linearly-independent meromorphic vector-solutions Wy (z),
k=0,1,...,m of the system (1), (2) become m linearly-independent meromorphic vector-
solutions Yy, Yia, ..., Y1, of the form (46) of the system (47), (44) for which the estimate
(50) is valid.
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By using solutions Yi1, Yio, ..., Y1, let us decrease the dimension of the matrix A another
m — 1 times and receive the systems of differential equations

Y = BYs, k=12....m, (51)
of the dimension n — k where Y = (Vg g+1, Uk k+2, - - -, Ugn) and the matrix
Skt1 — DkUk—1k+1/Vk—1k Dk+1 0 .. 0

B — | @2t — PkVk—1k+2/Vk—1k Sk+2  DPkt2 ... O ‘ (52)
Qp k+1 — pkvk—l,n/vk—l,k Qpk+2 Opk+3 --- Sp

By applying the estimate (50) of the meromorphic vector-solution of the system (51) several
times (k= 1,...,m) we finally obtain

maxT(r,Vy) 2 max  T(r,Yi,) = O( max 7T(r, Wz)> (53)

t=1,2,.,m—k+1 i=0,1,..,m
For the meromorphic solution Yy = (Vkg+1,Vkk+2s---,0kn) Of the system (51), (52) let
us put into the correspondence the vector hy = (hgjt1, Pkjt2, - -5 hikn), Where hy i, =

Uk horp/ Vbt D= 1,2,...,m —k; k=1,2,...,m. Then

vh 10
m(r, hikp) = m(r, 22) & O T(r,ves,) + ) @
— O(ln*( max  T(r, Yk,t)) +1In 7”) ® (54)
t=1,2,....,m—k+1

:O<ln+<'_max T(r,W@))—t—lnr), p=1,....n—k; k=1,...,m,

=U,1,...,

r ¢ E. We will use the following lemma.

Lemma 3. The following equality holds true (j € N, j <n —m)
dj1(Bp) = djmi1(A) + djm(A) + ..+ dj1(A) + Py, (55)

f’mj = pmj(hk7k+p,d,,7s(A)) are polynomials in hypyp, Kk =0,1,...,m—1; p=1,2,...,7,
and d,s(A), s = 1,2,....m+j; v < j — 1, of degree no more than 1 in every function
P jtps dys(A).

Let us continue the proof of the theorem. By decreasing the dimension of the matrix A
we used m meromorphic vector-solutions. Since we have assumed that there are m + 1 such
solutions of system (1), (2) then the system Y, = B,,Y,, (see (51), (52)) has at least one
more non-trivial meromorphic vector-solution Y, = (Um.m+1, Umm+2; - - - s Um.n) for which (see
(53)) the following estimate holds

T(r,Y,,) :()(;gllax T(r,m)). (56)
By transforming the system Y, = B,,Y,, to the form similar to (36) we get the system
of linear homogeneous equations with the matrix Q,—m(Bm, hm) (see (24)) with the non-
trivial solution Y, = (Vmm+1, Umm+2s -« > Umn)- Thus Qn_m(Bm, hm) = 0. Hence, taking
into account (25), we obtain

o 'U;n,,m-i-i

(hm = (hm,erl; hm,m+2; cey hm,eri; cey hm,n)y h'm,eri = 5
Um,m+i
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i=1,2,....,n—m; Qo(Bn, m) =1, don-m+1(Bm) = 1), (57)

dn—m,l(B ) - hm nQn m—1 Bmah + Z Qz Bmah mm+i+1dn—m—i—1,i+2(Bm)' (58)
=0

Let us apply in (58) to Qi(Bpm, hm), i < n—m — 1, Lemma 1 (see (26)). To dj1(Bn), j <
n —m — 1, let us apply the formula (55). By taking into account that d;.(B,,) = d;m+¢(A)
fort >2and j=1,2,...,n —m (see (52)), we obtain

dnfm,l(Bm> (5:8) P(du,s<A>7 hk,k+p)7 (59)

where P is a polynomial of degree no more than 1 in d,(A), v <n—m, s=1,...,n and
Pijips K=0,1,....m; p=1,...,n—m. From (55) at j = n —m it follows

dn—m,l(Bm) = dn—m,m—i-l(A) + dn—m,m(A) +...+ dn—m,l(A) + pm,n—ma (60>

f’m’n,m = ﬁm’n,m(hk,ker,dy,s(A)) is the polynomial in hyj4p, & = 0,1,....m —1; p =
L,2,....n—m, and d,s(A), s=1,2,...,n; v < n—m — 1, of degree no more than 1. By
taking into account the definition of H,_,,(A) (19) and also the equalities (59), (60) and
properties of the polynomials P(d,, s(A), ki m+p)s Pmm_m we obtain

Hn—m(A) - dn—m,m+1(A) + dn—m,m(A) +...+ dn—m,l(A) - Rm,n—m, (61>

Rin—m = Run—m(Pisps dvs(A)) is a polynomial in hg iy, £ =0,1,...,m;
p=12,....,n—m,and d,s(A), s =1,2,...,n; v < n—m — 1, of degree no more than
1 in every variable. From the equality (61) and by taking into account properties of the
polynomials R, ,—n, we obtain (r € E)

m(r,Hn,m(A))g Yooom(r hgsp) + Y m(rdys(A))+

k=0,1,...,m, s=1,2,...,n,

. p=1,...n—m v<n—m—1 (62)
+0(1) & O(In™ (. _max T(r,Wy))+Inr)+ > m(r,d,s(A)).
=Ly s=1,2,...,n,

v<n—m—1

Bus E 00[dys] < 02 Hyon(A)] E 05 maxf,, < B <a, (63)
s=1,...,n; v=1,...,n—m+ 1. Similar to (40) we obtain
m(r,dys) < Inpt(Inr’*), > 0. (64)
Let us denote
. . @)
o =0, Wi, i=0,1,...,m; o=maxo; < o ,[H, m(A)]. (65)

Then by taking into account (16) we obtain

T(r,W;) < o *(Inr7*) < o H(Inr7"), >0, r> 7. (66)
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From (14), (62), (64), (66) it follows (K = const > 0)
m(r, Hy_m(A)) < K(In @ (Inr?) + Ing t(InrP+9)) < 2K Inp~ H(Inrmx@dte) 7 B
Similar to (33) we obtain
m(r, Hy—m(A)) = O(In = (In @@ F2)) e > g2 > 0.
Thus
(13)
<

m(ﬁHn—m(A))) _ ( O(ln@*1(1nrmax(076)+25)))

o (e p(e
< (1+o0(1 elmp 1(In pmax(0,f)+2¢) 1+ 0(1)In Tmax(a,ﬁ)+2g'
¥

From here and from (12) we have ¢2[H,,_,,(A)] < max(o, 3), which contradicts (63), (65).

©
The case where in (2) some of p; = 0, shall be considered in a way similar to [2]. The
proof of Theorem 2 is similar to that of Theorem 1. n

Proof of Lemma 3. By taking into account (45) let us represent d;; (B,,) via the determinants
of the matrix B,,,—1 (By = A, do j+2(Bm-1) =1 (see (19), (2)))

j—1
djl(Bm) = jQ(Bm—1> + Qj(Bm—ly hpm—1) + Z Qi(Bp-1, hm—l)dj—i,i—i-Q(Bm—l)- (67)

=1

By USil’lg (24) we have Q()(A, ]’L) = ]., Ql(A, h) = 51 — hl = dn(A) - ]’Ll,

QO(Bm—la hm—l) = 17 Ql(Bm—la hm—l) - dll(Bm—l) - hm—l,ma

where A1 = (Rm—1.m}; Pm—1m+1; - - -5 Bmn—1.0), Pn—1m+i = ::%::,z =0,1,...,n—m. Thus
(doj+1(Bm-1) = 1)
(25)
Q](Bm 1 hm 1) = dj,l(Bm—l) - hm—l,mdj—1,2<Bm—1)_
(dll( ) hm—l,m)hm—l,m-i-ldj—Q,S(Bm—l)_
(26)
- Z Qz( m— 1; m— 1)hmfl,m+idjfifl,i+2(Bmfl) = (68)

— W51 = hm 1 mdj 1,2 — (dll - hm 1 m)hmfl,m+1dj72,3_

— Z( i1 — dic1 1l 140 + Z dtlptz)hm—l,m+idj—i—1,i+27

where dyy =dii (Bp-1); Pii=Pii(hm—1,m-1+p, dvs(Bm—1)) are some polynomials in A,—1 m—14p
and dy, o (Bp_1); p=t+1,t4+2,...,i; s=t+2,t+3,...,0; v<i—1; i=23,...,j—1; t=
0,1,...,7—2 of degree no more than 1 in every hp,—1m—1+, and d, (By,—1). By grouping in
(68) the summands that contain d;; = d;1(By-1), 1 =0,1,...,7 — 1, we obtain (dy; = 1)

j—1

Qj (Bmfla hm 1) 7, 1(Bm71) + Z dil (Bmfl)]3£<hmfl,mfl+pa du,s(Bmfl)% (69>

=0

P (hm-1,m-14p; dv,s(Bm-1)) are polynomials in Ay 1m-14p and d, o(Bm-1); p = i+ 1,4 +
2,...,], s=i+2,1+3,....5;, v<j—1;, i=0,1,...,7— 1, of degree no more than 1 on
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every of hm Lm—1+p and d, s(By,—1). By transforming the sum in the right hand side of (67)
(Ql( m— 17 m— 1) —dll _hm 1m>

ZQZ( 15 Pm—1)dj—i i+2(Bm-1) 20 (di1 — hyp—1,m)dj—1 3+
—2
+ Z < i1 — dic1,1 -1 m—14i Z dtlptz> dj—iito = (70)
= Z dzl( )P](hm 1,m— 1+p7d S(Bm—1>>a dOl(Bm—l) - 17

where the polynomials P; = Pi(hm-1m-14p dvs(Bm—1)) are the same as in (68);
P (hm—1m—11ps dvs(Bm—1)) are polynomials in A, 1,11, and d, s, of degree no more than
1 in every hp—1m-14p and dys(Bpm-1); p=i+1,i+2,....5; s=1i+2,i+3,...,7+1;
v<j—1;4=1,...,7 — 1. By substituting (69), (70) into (67) and then grouping the

summands with d;; (B,,_1), we obtain

j—1
dj1(Bm) = dj1(Bm-1) + dj2(Bm-1) + Z dir(Bm-1) Py, (71)
i=0
P = Pij(hm-1m-1+p, dvs(Bm—1)) are polynomial in hy,—1m—14p and d,, 4(By,—1), of degree
no more than 1 in every hy—1m-14p and dys(Bm-1); p =i+ 1Li+2,...,j; s =1+ 2,
i3, .+ v<j—1i=12...,j—1 But (see (52), (44), (18)) dys(Bm_1) =
dym+s—1(A) at s > 2. Thus

j—1
djl(Bm) = j,l(Bm—l) + dj,m-i-l (A) + Z dil(Bm—l)]Dij(hm—l,m—l+p> du,m+s—l)a (72)
i=0
Pij(hm—1m-14ps dum+s—1(A)) are polynomials in hy,—1m—14+p and dmis—1(A), of degree no
more than 1 on every hp—1m—14p and dymis—1(A); p =i+ 1,i4+2,...,5; s =1+ 2,
i3+l v<j—1i=12...,j—1.
Let us prove the formula (55). If m = 1 then from (72) it follows (By = A, hy =
(woy /wor, - - - Wy, /Won ), hop = wh,/wop (see (49)))

4a(B1) = dia(4) + dialA) + T di(A) Pl () =

T2 (73)
dll(A)+di,2(A)+P1i, ’ieN, zén—l,

Py; is a polynomial in hop and d,s(A), p=1,2,...,4; s=1,2,...,i+1; v <1 of degree
no more than 1 in every of the functions.
Let for every 7 € N, i < j < n —m, 2 < m the following equality take place

dil (Bm—l) = dl71(A) + d%g(A) + ...+ dz,m(A) -+ Pm—l,i; 1 < n—m, (74)

P,,_1, is a polynomial in hgp, hipi1,---s Rm—am—24+p and d,s(A); p=1,2,...,4; s = 1,2,
., i+m—1; v < i of degree no more than 1 in every of hy 4+ and d, s(A). By substituting
(74) into (72) we obtain

dﬂ(B ) =dj1(A) + djo(A) + ...+ djm(A) + djnir (A) + P+
+ Z( ( ) e + dl,m(A) + pm—l,i)ljij(hm—l,m—l+p> du,m+s—1(A)) ==
= d;1(A) + dj2(A) + ...+ djmsr (A) + Py,
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]Sm,j is a polynomial in hgy, A1 pi1, .-y Pm—tm—14p and dys(A); p=1,2,...,5;s=1,2,...,
J+m; v < of degree no more than 1 on every hy iy and d,s(A). Here we took into

account that P,,_1, contains d, s(A) with indices s = 1,2,...,i+m —1 and Py‘(hm_Lm_l_;,_p,

dym+s—1(A)) contain d, ;,+5—1(A) with indexes s = i+2,i+3,...,j+1. Then P,,_;; includes

also hop, hipi1s--o s hm—om—orp at p = 1,2,... i and Pjj(hm—1m—14p dum+s—1(A)) contain

Pm—1m—1+p With indices p =i+ 1,9 +2,...,7. O]
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