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Systems of linear differential equations that allow for dimension decrease are considered.
Growth estimates for meromorphic vector-solutions are obtained. An essentially new feature is
that there are no additional constraints for the growth order of the system coefficients.

Let M be the field of meromorphic in C functions, let E be the ring of entire functions,
E ⊂ M . Consider the system

dwj

dz
=

n∑
k=1

aj,kwk, aj,k ∈ E , j = 1, . . . , n. (1)

According to [1, Chapter 1, § 5], every vector-solution W (z) = (w1(z), . . . , wn(z)), z ∈ C, of
the system (1) has components wj ∈ E , j = 1, . . . , n. Applications of the Nevanlinna theory
to analytic theory of differential equations are widely known, see [2]–[4]. In particular in the
proof of Theorem 1 we follow the approach from [2].

Let A be the coefficients matrix of the system (1):

A = B0(z) =


s1 p1 0 . . . 0
a2,1 s2 p2 . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
an−1,1 an−1,2 an−1,3 . . . pn−1

an,1 an,2 an,3 . . . sn

 , aj,k, sj, pi ∈ E . (2)

In [2] the properties of vector-solutions of the system (1), (2) were studied. Here the
coefficients aj,k, sj, pi, were entire functions of finite growth rate. In this paper a significantly
new feature is that we do not pose any restrictions on the growth rate of the coefficients and
solutions. The scale from [4] is used in Theorem 1 to measure an arbitrarily growth rate of
positive functions.

The major idea that was used in the proof by [2] was to decrease the system dimension.
This transformation leads to the system with meromorphic coefficients and meromorphic
components of a vector-solution (see (42), (43)). In Theorem 2 we obtain the estimates for
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the growth rate of meromorphic vector-solutions for the system of linear differential equations
with meromorphic coefficients.

Let us use the standard notations of the theory of meromorphic functions [6]. Landau
symbols O(. . .), o(. . .) are used in this article at r → +∞. Growth rate of f ∈ M is described
by Nevanlinna characteristics m(r, f), T (r, f); remind

m(r, f) =
1

2π

∫ 2π

0

ln+ |f(reiφ)|dφ, ln+ x = max(lnx, 0), x > 0.

If f is an entire function then T (r, f) = m(r, f). Let us denote D(r, f) to be any of the
characteristics T (r, f), m(r, f). If f, g ∈ M , then [6, pp. 44, 45]

D(r, f + g) 6 D(r, f) +D(r, g) + ln 2,

D(r, f · g) 6 D(r, f) +D(r, g), T (r,
f

g
) 6 T (r, f) + T (r, g) +O(1). (3)

As E let us denote some sets of intervals on [0,+∞) with a finite sum of lengths (mesE <
+∞). A function f ∈ M has a finite growth order ρ[f ] if

ρ = ρ[f ] = lim sup
r→+∞

lnT (r, f)

ln r
< +∞. (4)

If f ∈ M then the following relations are known to be true ([6, pp. 122, 125, 131])

m

(
r,
f (k)

f

)
= O(ln r), if ρ[f ] < +∞, k = 1, 2, . . . ; (5)

m

(
r,
f (k)

f

)
= O(ln+ T (r, f) + ln r), r ̸∈ E, if ρ[f ] = +∞, k = 1, 2, . . . (6)

If F (f1, . . . , fn) is a rational function of fj ∈ M, degfjF = kj, j = 1, . . . , n, then ([7])

T (r, F (f1, . . . , fn)) 6
∑

j=1,...,n

kjT (r, fj) +O(1); (7)

if R(f1, . . . , fn) is a polynomial in fj ∈ M, degfjR = kj, j = 1, . . . , n, then

m(r, R(f1, . . . , fn)) 6
∑

j=1,...,n

kjm(r, fj) +O(1). (8)

If F (z) = P (z,f(z))
Q(z,f(z))

= a1tf t+...+a11f+a10
a2mfm+...+a21f+a20

, where f, aij ∈ M ; a1t, a2m ̸≡ 0; d = max(m, t)

and P (z, w), Q(z, w) are relatively prime as polynomials in w over the field M then ([8])

T (r, F ) = d T (r, f) +O
(∑

i,j

T (r, aij)
)
. (9)

Let W (z) = (w1(z), . . . , wn(z)), wj ∈ M, j = 1, . . . , n. Denote

T (r,W ) = max
j=1,...,n

T (r, wj). (10)
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If the system (1), (2) has transcendental coefficients, then the components of its vector-
solutions W (z) = (w1(z), . . . , wn(z)) can be entire functions of infinite growth order ρ[wj]
(see (4)). There are several scales for measuring growth order of the functions with the infi-
nite growth rate. In the paper [9] for growth rate of linear differential equations solutions
p-th iteration order ρp(f) was used. In the article [10] [p, q]-order σ[p,q](f) was applied. The
definitions of these orders do not describe an arbitrary growth rate. This means that there
exists a function f ∈ E that has an infinite [p, q]-rate and p-th iteration order for arbitrary
p ∈ N. There is no such a drawback in the scale proposed in [11] and adopted for vari-
ous applications in [4]. As Φ let us denote the class of positive unbounded non-decreasing
functions φ : (0,+∞) → (0,+∞) such that φ(et) is slowly growing

∀c > 0 :
φ(ect)

φ(et)
→ 1, t → +∞. (11)

Thus if f ∈ M, φ ∈ Φ then the growth orders are defined as:

σ0
φ[f ] = lim sup

r→+∞

φ(eT (r,f))

ln r
, σ1

φ[f ] = lim sup
r→+∞

φ(T (r, f))

ln r
. (12)

From (11) it follows ∀c > 0 : φ((et)c) = (1 + o(1))φ(et), t → +∞; if we denote x = et

then the previous iimplies

∀φ ∈ Φ ∀c > 0 : φ(xc) = (1 + o(1))φ(x), x > x0. (13)

For the functions φ ∈ Φ it holds ([4])

∀φ ∈ Φ ∀m > 0 ∀k > 0 :
φ−1(lnxm)

xk
→ +∞.

In particular, ∀φ ∈ Φ ∀m > 0 : x < φ−1(lnxm), x > x0. Thus

∀φ ∈ Φ ∀m > 0 : lnx < lnφ−1(lnxm), x > x0. (14)

Due to the result of Filevych ([12]) we have:

(∀f ∈ E , ρ[f ] = +∞) (∃φ ∈ Φ) : σ0
φ[f ] = 1. (15)

This means that the function f has a finite positive growth order σ0
φ[f ]. This statement allows

estimating the growth order of vector-solutions of the fundamental system of solutions of
(1), (2) via the growth order of its coefficients.

If σ1
φ[f ] = σ < +∞ then taking into account (12) we have ∀ε > 0 : φ(T (r, f)) <

ln rσ+ε, r > r0. Then

σ1
φ[f ] = σ ⇒ T (r, f) < φ−1(ln rσ+ε), ε > 0, r > r0. (16)

If g ∈ M and σ0
φ[g] = α < +∞ then by taking into account (12) we obtain ∀ε > 0 :

φ(eT (r,g)) < ln rα+ε, r > r0. Thus

σ0
φ[g] = α ⇒ T (r, g) < lnφ−1(ln rα+ε), ε > 0, r > r0. (17)
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Denote, see (2)(j = 1, . . . , n; t = 1, . . . , n− j + 1)

djt(A) =

∣∣∣∣∣∣∣∣∣∣
st pt 0 . . . 0

at+1,t st+1 pt+1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
at+j−2,t at+j−2,t+1 at+j−2,t+2 . . . pt+j−2

at+j−1,t at+j−1,t+1 at+j−1,t+2 . . . st+j−1

∣∣∣∣∣∣∣∣∣∣
, (18)

d0,t ≡ 1, Hj(A) =

n+1−j∑
t=1

dj,t(A). (19)

The main result of this article is the following

Theorem 1. Let the system (1), (2) be such that all coefficients aj,k, sj, pi ∈ E , and m ∈
{0, 1, · · · , n− 1}

σ0
φ[Hn−m(A)] > σ0

φ[djt(A)], j = 1, 2, . . . , n−m− 1; t = 1, . . . , n− j + 1. (20)

Then there exist no m+1 linear independent meromorphic vector-solutions Wk(z) = (wk1(z),
. . . , wkn(z)), of the system (1), (2) such that

σ1
φ[Wk] < σ0

φ[Hn−m(A)], k = 0, 1, . . . ,m. (21)

The following Theorem 2 is similar to Theorem 1, though they do not follow one from
another. If in the system (1), (2) the coefficients aj,k, sj, pi ∈ M and P is the set of poles
of all coefficients, then according to [1, Chapter 1, §5] every vector-solution has components,
that are analytic functions in C\P . We are interested in vector-solutions W (z) = (w1(z), . . . ,
wn(z)) with components wj ∈ M, j = 1, . . . , n.

Theorem 2. Let the system (1), (2) be such that all coefficients aj,k, sj, pi ∈ M, and
(m ∈ {0, 1, · · · , n− 1}, j = 1, 2, · · · , n−m− 1)

m(r, djt(A)) = o(m(r,Hn−m(A))), r ̸∈ E; t = 1, . . . , n− j + 1. (22)

Then there exists no m + 1 linear independent meromorphic vector-solutions Wk(z) =
(wk1(z), . . . , wkn(z)), k = 0, 1, . . . ,m, of the system (1), (2) such that ln(r · T (r,Wk)) =
o(m(r,Hn−m(A))), r ̸∈ E; (whose growth rate is restricted by growth rate of the coeffi-
cients).

Remark 1. If we apply more precise estimates of logarithmic derivative (5) for important
sub-classes of meromorphic functions then the following can be obtained: if the coefficients
of the system (1), (2) are such that

m(r, djt(A)) = O(ln r), j = 1, 2, . . . , n−m− 1; t = 1, . . . , n− j + 1;
m(r,Hn−m(A)) ̸= O(ln r),

(23)

then the system has no more than m linearly-independent meromorphic vector-solutions
Wk, k = 1, 2, . . . ,m of finite growth order. The relations (23) hold true if e.g. djt(A) are any
rational functions and Hn−m(A) is transcendent function. In fact, a transcendent function
grows faster than any rational function [6, pp. 49, 50].
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Example 1. Consider the system w′
1 = w2, w′

2 = e2zw1 + w2. The matrix of the system is
A =

(
0 1

exp 2z 1

)
, d11(A) = 0, d12 = 1; H2(A) = −e2z, m(r,H2(A)) = 2m(r, ez) = 2r

π
([13, p.

25]). We have: 0 = m(r, d11(A)) = m(r, d12(A)) = o(m(r,H2−0(A))). In this example n = 2,
m = 0. Thus from Theorem 2 it follows that the system does not have meromorphic vector-
solutions W such that ln+ T (r,W ) + ln r = o(m(r,H2−0(A))), r ̸∈ E. This system has two
linearly-independent meromorphic vector-solutions W1 =

(
ee

z
, ezee

z)
,W2 =

(
e−ez , −eze−ez

)
.

For entire function exp exp z ([13, p. 26]) T (r, ee
z
) = m(r, ee

z
) ∼ er

(2π3r)1/2
, r → +∞. Taking

into account (9) it follows T (r, eze−ez) = T (r, ee
z
) + O(T (r, ez)) ∼ er

(2π3r)1/2
, r → +∞. Thus

keeping in mind the definition W1, W2, we obtain T (r,Wj) ∼ er

(2π3r)1/2
, r → +∞, j = 1, 2.

Thus r ∼ ln(r · T (r,Wj)) ̸= o(m(r,H2(A))), r → +∞ because m(r,H2(A)) ∼ 2r
π
, r → +∞.

Example 2. The system w′
1 = w2, w′

2 = w2(1 + ez) has the matrix A = ( 0 1
0 1+ez ) ; H1 =

H2−1(A) = 1 + ez; n = 2, m = 1; m(r,H1(A)) = m(r, ez + 1) = m(r, ez) + O(1) ∼ r
π
,

r → +∞. A fundamental system consists of two linearly independent meromorphic vector-
solutions. According to Theorem 2 this fundamental system has no more than one mero-
morphic vector-solution W such that ln+ T (r,W ) + ln r = o(m(r,H1(A))), r ̸∈ E. This
solution is W1 = (1, 0). The second linearly independent solution of the fundmental system
is W2 =

(
ee

z
, ezee

z). Similar to Example 1 T (r,W2) ∼ er

(2π3r)1/2
, ln+ T (r,W2)+ln r ∼ r, r →

+∞. Thus r ∼ ln(r · T (r,W2)) ̸= o(m(r,H1(A))), r → +∞, because m(r,H1(A)) ∼ r
π
,

r → +∞.

Let us consider the vector h(z) = (h1, h2, . . . , hn) where hj ∈ M . Denote

Q0(A, h) ≡ 1, Qk(A, h) =

∣∣∣∣∣∣∣∣∣∣
s1 − h1 p1 0 . . . 0
a2,1 s2 − h2 p2 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
ak−1,1 ak−1,2 ak−1,3 . . . pk−1

ak,1 ak,2 ak,3 . . . sk − hk

∣∣∣∣∣∣∣∣∣∣
, (24)

k = 1, 2, . . . , n. By using (24) we have (d1,k = sk)

Qk = −hkQk−1 +

∣∣∣∣∣∣∣∣∣∣
s1 − h1 p1 0 . . . 0 0
a2,1 s2 − h2 p2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ak−1,1 ak−1,2 ak−1,3 . . . sk−1 − hk−1 pk−1

ak,1 ak,2 ak,3 . . . ak,k−1 sk

∣∣∣∣∣∣∣∣∣∣
=

= −hkQk−1 −Qk−2hk−1d1,k +

∣∣∣∣∣∣∣∣∣∣
s1 − h1 p1 0 . . . 0 0
a2,1 s2 − h2 p2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ak−1,1 ak−1,2 ak−1,3 . . . sk−1 pk−1

ak,1 ak,2 ak,3 . . . ak,k−1 sk

∣∣∣∣∣∣∣∣∣∣
=

= . . . = dk,1(A)−
k−1∑
i=0

Qi(A, h)hi+1dk−i−1,i+2(A), d0,k+1(A) = 1. (25)

Lemma 1. The determinant Qk(A, h) can be represented as

Qk(A, h) = dk1(A)− dk−1,1(A)hk +
k−2∑
j=0

dj1(A)Pjk, k = 1, 2, . . . , n, (26)



FAST GROWING MEROMORPHIC SOLUTIONS OF THE SYSTEMS 163

where h = (h1, h2 . . . , hn); Pjk is a polynomial in functions ht and dνs(A), j + 1 6 t 6 k,
j + 2 6 s 6 k, ν < k, of degree at most 1 for every ht, dνs.

Proof of Lemma 1. Taking into account the definitions (24), (18) we have (d01 = 1)
Q1(A, h) = s1 − h1 = d11 − d01h1, Q2(A, h) = d21 − d11h2 − d01(d12h1 − h1h2) = d21 −
d11h2 − d01P02, Q3(A, h) = d31 − d22h1 − h2Q1(A, h)d13 − h3Q2(A, h) = d31 − d21h3 +
d11(h2h3 − h2d13) + d01(d13h1h2 − h1d22 + d12h1h3 − h1h2h3) = d31 − d21h3 + d11P13 + d01P03.
The assumptions of the lemma preconditions for the polynomials P02, P13, P03 hold true.

Assume that the statement of the Lemma are proved for all Qi, i = 1, . . . , k − 1. Let us
prove it for Qk, k > 4. By substituting into (25) the decompositions Qi of the form (26),
after simple transformation we obtain (d0,k+1 = 1)(k > 4)

Qk = dk1 − hk

(
dk−1,1 − dk−2,1hk−1 +

k−3∑
j=0

dj1Pj,k−1

)
−Q1h2dk−2,3 −Q0h1dk−1,2−

−
k−2∑
i=2

(
di1 − di−1,1hi +

i−2∑
j=0

dj1Pj,i

)
hi+1dk−i−1,i+2 = dk1 − hkdk−1,1−

−Q1h2dk−2,3 −Q0h1dk−1,2 −
k−2∑
i=2

i−2∑
j=0

dj1Pj,ihi+1dk−i−1,i+2 −
∑

1 −
∑

2+
∑

3;∑
1

=
k−3∑
j=0

dj1Pj,k−1hk − dk−2,1hk−1hk
def
=

k−2∑
j=0

dj1P
1
j,k;∑

2

=
k−2∑
i=2

di1hi+1dk−i−1,i+2
def
=

k−2∑
i=2

di1P
2
i,k;∑

3

=
k−2∑
i=2

di−1,1hihi+1dk−i−1,i+2
def
=

k−2∑
i=2

di−1,1P
3
i−1,k;

Q1h2dk−2,3 = d11h2dk−2,3 − d01h1h2dk−2,3
def
= d11P

4
1,k + d01P

4
0,k;

Q0h1dk−1,2 = d01h1dk−1,2
def
= d01P

5
0,k, d01 = 1, Q0 = 1;

k−2∑
i=2

i−2∑
j=0

dj1Pj,ihi+1dk−i−1,i+2 =
k−4∑
j=0

dj1
k−2∑

i=j+2

Pj,ihi+1dk−i−1,i+2.

(27)

From induction hypothesis about polynomial properties Pj,k−1 and the definitions of the
polynomials P s

j,k, s = 1, 2, . . . , 5, j = 0, 1, . . . , k−2, it follows that P s
j,k are some polynomials

in ht and dνs, j + 1 6 t 6 k, j + 2 6 t 6 k, ν < k of degree no more than 1 in every
ht, dνs. By grouping the summands that contain dj1, j = 0, 1, . . . , k − 2 we obtain

∑
1

+
∑
2

−
∑
3

−Q1h2dk−2,3 −Q0h1dk−2,2
def
=

k−2∑
j=0

dj1P
∗
j,k , (28)

where P ∗
j,k are some polynomials in ht and dνs, j + 1 6 t 6 k, j + 2 6 t 6 k, ν < k of

degree no more than 1 on every ht, dνs. After substitution of (27), (28) into the expression
for Qk and grouping the summands that contain dj1, j = 0, 1, . . . , k − 2 we obtain (26).

Proof of Theorem 1. The case m = n−1 will be considered in a more general form. Consider
the system (1) with the coefficients akj ∈ E (condition (2) may not be satisfied). Let SpA =
a11 + a22 + . . . + ann = H1(A) be the trace of matrix A of the system (1). Let us prove
that the system (1) does not have m + 1 = n linearly independent vector-solutions Wk =
(wk1, . . . , wkn) such that

σ0
φ[SpA] > σ1

φ[Wk]
def
= σk, k = 1, . . . , n. (29)
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Assume that there exist n linearly independent vector-solutions Wk for which (29) holds true.
Then Wk, k = 1, . . . , n, is the fundamental system of solutions for (1) with the determinant
D(z) satisfying the equality D′(z)

D(z)
= SpA. Then

m(r, SpA) = m

(
r,
D′(z)

D(z)

)
(6)
= O(ln+ T (r,D) + ln r), r ̸∈ E. (30)

Taking into account the definition of D(z) and the estimate (7) we obtain:

T (r,D)
(10)
6

∑
16k,j6n

T (r, wk,j) +O(1) 6 n2 max
k=1,...,n

T (r,Wk) +O(1). (31)

From (29), (16) we have φ(T (r,Wk)) < ln rσk+ε, ε > 0. Let σ = maxσk, k = 1, . . . , n.
Then T (r,Wk) < φ−1(ln rσ+ε), ε > 0, k = 1, . . . , n, and by taking into account (31),
T (r,D) = O(φ−1(ln rσ+ε)), ε > 0. Then from (30) it follows (K = const > 0)

m(r, SpA) < K(ln+ T (r,D) + ln r)
(14)
< 2K(lnφ−1(ln rσ+ε)), r ̸∈ E. (32)

If r > mesE then ∃r1 ∈ [r, 2r] \ E. Since the function SpA is entire then the functions
m(r, SpA), lnφ−1(ln rσ+ε) are increasing. So we have:

m(r, SpA) 6 m(r1, SpA) < 2K(lnφ−1(ln rσ+ε
1 )) 6

6 2K(lnφ−1(ln(2r)σ+ε)) < 2K(lnφ−1(ln rσ+2ε)), r > r0, ε > 0. (33)

Therefore m(r, SpA) = O(lnφ−1(rσ+2ε)), r > r0, ε > 0. So

φ
(
em(r,SpA)

)
= φ

(
eO(lnφ−1(ln rσ+2ε))

) (13)
< (1 + o(1))φ

(
elnφ−1(ln rσ+2ε)

)
=

= (1 + o(1)) ln rσ+2ε, r > r0.

By taking into account the definition σ0
φ[SpA] and the fact that for the entire function

m(r, SpA) = T (r, SpA) we obtain σ0
φ[SpA] 6 σ + 2ε. Thus σ0

φ[SpA] 6 σ = maxσk, k =
1, . . . , n, which contradicts (29).

Suppose now that in (2) all pj ̸≡ 0, j = 1, . . . , n− 1. If W = (w1, . . . , wn) is a non-trivial
meromorphic vector-solution of the system (1), (2) then from matrix (2) structure it follows
that w1 ̸≡ 0.

Let m = 0. Then n−m = n,

Hn−m(A) = Hn(A) = dn1(A). (34)

Assume that there exists a non-trivial meromorphic solution W = (w1, . . . , wn) of the system
(1), (2) such that

σ
def
= σ1

φ[W ] < σ0
φ[Hn(A)]

def
= α. (35)

Let us rewrite the system (1), (2) as:

w1(s1 − w′
1/w1) + p1w2 = 0,

w1a21 + w2(s2 − w′
2/w2) + w3p2 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
w1an1 + . . .+ wn−1an,n−1 + wn(sn − w′

n/wn) = 0.

(36)
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This system has a non-trivial solution W (z). So (24) Qn(A, h0) ≡ 0, where h0=(h01, . . . , h0n),
h0j = w′

j/wj, j = 1, . . . , n. From Lemma 1 it follows

0 ≡ Qn(A, h0)
(26)
= dn1(A)− dn−1,1(A)h0n +

n−2∑
j=0

dj1(A)Pjn, (37)

where Pjn are some polynomials in functions h0t = w′
t/wt, j + 1 6 t 6 n, and dνs(A), ν <

n, j+2 6 s 6 n, of degree no more than 1 in every of h0t, and dνs. Thus taking into account
(34) we have

Hn(A) = dn−1,1(A)h0n −
n−2∑
j=0

dj1(A)Pjn.

From this equality and properties of the polynomials Pjn it follows:

m(r,Hn(A))
(8)
6

n∑
j=1

m
(
r,

w′
j

wj

)
+

∑
16j6n−1,
16t6n−j+1

m(r, djt) +O(1)
(6)
6

6 O
( n∑
j=1

ln+ T (r, wj) + ln r
)
+

∑
16j6n−1,
16t6n−j+1

m(r, djt), r ̸∈ E.
(38)

Inequality (20) for m = 0 implies

βjt
def
= σ0

φ[djt] < σ0
φ[Hn(A)]

def
= α, j = 1, . . . , n− 1; t = 1, . . . , n− j + 1. (39)

Let us denote max βjt
def
= β

(39)
< α. For the entire function djt(A) the following equality

T (r, djt) = m(r, djt) holds. Keeping in mind (17), (39) this gives us:

m(r, djt) < lnφ−1(ln rβ+ε), ε > 0. (40)

From (10), (35) it follows

T (r, wj)
(10)
6 T (r,W )

(35),(16)
< φ−1(ln rσ+ε), ε > 0, r > r0. (41)

From (38), (41), (14), (40) we obtain (K = const > 0) m(r,Hn(A)) < K · (lnφ−1(ln rσ+ε)+
+ lnφ−1(ln rβ+ε)) < 2K lnφ−1(ln rmax(σ,β)+ε), r ̸∈ E. Similar to (33) we obtain:

m(r,Hn(A)) = O
(
lnφ−1(ln rmax(σ,β)+2ε)

)
, r > r0, ε > 0;

em(r,Hn(A)) = eO(lnφ−1(ln rmax(σ,β)+2ε)); φ(em(r,Hn(A))) = φ(eO(lnφ−1(ln rmax(σ,β)+2ε)))
(13)
<

< (1 + o(1))φ(elnφ−1(ln rmax(σ,β)+2ε

) = (1 + o(1)) ln rmax(σ,β)+2ε, r > r0.

From this estimate, from (12) and from the fact that for entire function m(r,Hn(A)) =
T (r,Hn(A)) we conclude that σ0

φ[Hn(A)] 6 max(σ, β), which contradicts (35), (39).
Let 0 < m < n − 1. Suppose that there exists m + 1 linearly-independent meromorphic

vector-solutions Wk = (wk1, . . . , wkn), k = 0, . . . ,m of the system (1), (2) such that (21)
holds. One of these m + 1 solutions e.g. W0 we denote by U, W0 = U = (u1, . . . , un) =
(w01, . . . , w0n). Any of the remaining m meromorphic vector-solutions is denoted by W =
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(w1, . . . , wn). Since U is a non-trivial meromorphic vector-solution of the system (1), (2) then
u1 ̸≡ 0. Let us describe the transformation from the system (1) with coefficient matrix (2) of
the dimension n to the system of differential equations with a coefficient matrix of the form
(2) and dimension n− 1.

For every of m meromorphic vector-solutions W = (w1, . . . , wn) of the system (1), (2) let
us assign the corresponding vector

V = (v1, v2, . . . , vn) =

(
w1

u1

, w2 −
w1u2

u1

, . . . , wn −
w1un

u1

)
, v1 =

w1

u1

̸≡ 0. (42)

From (1), (2), (42) it follows that these m vectors V (42) are the solutions of the system
[2, formulae (3,9)–(3,13)]

v′1 = v2p1/u1,
v′2 = v2(s2 − p1u2/u1) + p2v3,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v′n = v2(an2 − p1un/u1) +
n−1∑
k=3

ankvk + snvn,

(43)

whose coefficients matrix has the form
0 p1/u1 0 . . . 0
0
... B1

0

 , B1 =


s2 − p1u2/u1 p2 0 . . . 0
a32 − p1u3/u1 s3 p3 . . . 0
. . . . . . . . . . . . . . . . . . . . . . .
an2 − p1un/u1 an3 an4 . . . sn

 . (44)

Lemma 2. The following relations hold true (d0,j+2(A) = 1)

dj,k−1(B1) = djk(A), k > 2, 1 6 j 6 n− 2,

dj1(B1) = dj2(A) +
∑j

k=1 Qk(A, h)dj−k,k+2(A), j = 1, 2, . . . , n− 1,
(45)

where h = h0 = (u′
1/u1, . . . , u

′
n/un) = (w′

01/w01, . . . , w
′
0n/w0n).

Proof of Lemma 2. If k > 2, then the first of equations (45) follows from the definition of
dj,k−1(B1) and matrix B1 (44). If k = 2 then

dj,1(B1)
(44)
= dj2(A)−

p1
u1

∣∣∣∣∣∣∣∣∣∣
u2 p2 0 . . . 0
u3 s3 p3 . . . 0
. . . . . . . . . . . . . . . . . . . . .
uj aj,3 aj,4 . . . pj
uj+1 aj+1,3 aj+1,4 . . . sj+1

∣∣∣∣∣∣∣∣∣∣
= dj2(A)−

−p1u2

u1

dj−1,3 +
p1p2
u1

∣∣∣∣∣∣∣∣∣∣
u3 p3 0 . . . 0
u4 s4 p4 . . . 0
. . . . . . . . . . . . . . . . . . . . .
uj aj,4 aj,5 . . . pj
uj+1 aj+1,4 aj+1,5 . . . sj+1

∣∣∣∣∣∣∣∣∣∣
= dj2 −

p1u2

u1

×
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×dj−1,3 +
p1p2
u1

u3dj−2,4(A)−
p1p2
u1

p3

∣∣∣∣∣∣∣∣∣∣
u4 p4 0 . . . 0
u5 s5 p5 . . . 0
. . . . . . . . . . . . . . . . . . . . .
uj aj,5 aj,6 . . . pj
uj+1 aj+1,5 aj+1,6 . . . sj+1

∣∣∣∣∣∣∣∣∣∣
=

= dj2(A) +

j∑
k=1

(−1)k
uk+1

u1

p1p2 . . . pkdj−k,k+2(A).

It is known [2] that (−1)k uk+1

u1
p1p2 . . . pk = Qk(A, h), h = (u′

1/u1, . . . , u
′
n/un). So we

obtain (45).

The matrix B1 (44) has the form (2). Taking into account (43), (42) each of m vectors

Y1 = (v2, v3 . . . , vn)
def
= (v12, v13, . . . , v1n) (46)

is a solution of the system of differential equations

Y ′
1 = B1Y1, (47)

whose dimension is n− 1.
By utilizing one solution U = (u1, . . . , un) of the previously known m + 1 meromorphic

vector-solutions of the system (1), (2) we decreased the dimension of this system by 1
and obtained the system (47), (44) that has m meromorphic vector-solutions (46). Let
Y11, Y12, . . . , Y1m be meromorphic vector-solutions of the system (47), (44) obtained in the
described above way (Y1 is one of these solutions). Since m+1 meromorphic vector-solutions
W0 = U = (u1, . . . , un), Wj = (wj1, . . . , wjn), u1, wj1 ̸≡ 0, j = 1, · · · ,m of the system (1), (2)
are linearly independent, we obtain that m meromorphic vector-solutions Y11, Y12, . . . , Y1m of
the system (47), (44) are also linearly independent (Y1 = (v12, v13, . . . , v1n), v12 ̸≡ 0). From
(42), (46), (10), (7) we obtain

T (r, Y1)
def
= max

j=2,3,...,n
T (r, vj)

(42),(7)
6

∑
06i6m,
16j6n

T (r, wi,j) +O(1). (48)

Then Wi = (wi1, . . . , win), T (r,Wi)
(10)
= max

j=1,...,n
T (r, wij); i = 0, 1, . . . ,m;

n∑
j=1

T (r, wi,j) 6 n max
j=1,...,n

T (r, wi,j) = nT (r,Wi); (49)

m∑
i=0

n∑
j=1

T (r, wi,j)
(49)
6

m∑
i=0

nT (r,Wi) 6 n(m+ 1) max
i=0,1,...,m

T (r,Wi).

Thus from (48) it follows

maxT (r, Y1)
def
= max

t=1,...,m
T (r, Y1,t) = O

(
max

i=0,1,...,m
T (r,Wi)

)
. (50)

Under transformation (42) m+1 linearly-independent meromorphic vector-solutions Wk(z),
k = 0, 1, . . . ,m of the system (1), (2) become m linearly-independent meromorphic vector-
solutions Y11, Y12, . . . , Y1m of the form (46) of the system (47), (44) for which the estimate
(50) is valid.
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By using solutions Y11, Y12, . . . , Y1m let us decrease the dimension of the matrix A another
m− 1 times and receive the systems of differential equations

Y ′
k = BkYk, k = 1, 2, . . . ,m, (51)

of the dimension n− k where Yk = (vk,k+1, vk,k+2, . . . , vk,n) and the matrix

Bk =


sk+1 − pkvk−1,k+1/vk−1,k pk+1 0 . . . 0

ak+2,k+1 − pkvk−1,k+2/vk−1,k sk+2 pk+2 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an,k+1 − pkvk−1,n/vk−1,k an,k+2 an,k+3 . . . sn

 . (52)

By applying the estimate (50) of the meromorphic vector-solution of the system (51) several
times (k = 1, . . . ,m) we finally obtain

maxT (r, Yk)
def
= max

t=1,2,...,m−k+1
T (r, Yk,t) = O

(
max

i=0,1,...,m
T (r,Wi)

)
. (53)

For the meromorphic solution Yk = (vk,k+1, vk,k+2, . . . , vk,n) of the system (51), (52) let
us put into the correspondence the vector hk = (hk,k+1, hk,k+2, . . . , hk,n), where hk,k+p =
v′k,k+p/vk,k+p, p = 1, 2, . . . , n− k; k = 1, 2, . . . ,m. Then

m(r, hk,k+p) = m(r,
v′k,k+p

vk,k+p
)

(6)
= O(ln+ T (r, vk,k+p) + ln r)

(10)
=

= O
(
ln+

(
max

t=1,2,...,m−k+1
T (r, Yk,t)

)
+ ln r

)
(53)
=

= O
(
ln+

(
max

i=0,1,...,m
T (r,Wi)

)
+ ln r

)
, p = 1, . . . , n− k; k = 1, . . . ,m,

(54)

r ̸∈ E. We will use the following lemma.

Lemma 3. The following equality holds true (j ∈ N, j 6 n−m)

dj1(Bm) = dj,m+1(A) + dj,m(A) + . . .+ dj,1(A) + P̃mj, (55)

P̃mj = P̃mj(hk,k+p, dν,s(A)) are polynomials in hk,k+p, k = 0, 1, . . . ,m − 1; p = 1, 2, . . . , j,
and dν,s(A), s = 1, 2, . . . ,m + j; ν 6 j − 1, of degree no more than 1 in every function
hk,k+p, dν,s(A).

Let us continue the proof of the theorem. By decreasing the dimension of the matrix A
we used m meromorphic vector-solutions. Since we have assumed that there are m+ 1 such
solutions of system (1), (2) then the system Y ′

m = BmYm (see (51), (52)) has at least one
more non-trivial meromorphic vector-solution Ym = (vm,m+1, vm,m+2, . . . , vm,n) for which (see
(53)) the following estimate holds

T (r, Ym) = O
(

max
i=0,1,...,m

T (r,Wi)
)
. (56)

By transforming the system Y ′
m = BmYm to the form similar to (36) we get the system

of linear homogeneous equations with the matrix Qn−m(Bm, hm) (see (24)) with the non-
trivial solution Ym = (vm,m+1, vm,m+2, . . . , vm,n). Thus Qn−m(Bm, hm) ≡ 0. Hence, taking
into account (25), we obtain(

hm = (hm,m+1;hm,m+2; . . . ;hm,m+i; . . . ;hm,n), hm,m+i =
v′m,m+i

vm,m+i

,
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i = 1, 2, . . . , n−m; Q0(Bm, hm) = 1, d0,n−m+1(Bm) = 1
)
, (57)

dn−m,1(Bm) = hm,nQn−m−1(Bm, hm) +
n−m−2∑

i=0

Qi(Bm, hm)hm,m+i+1dn−m−i−1,i+2(Bm). (58)

Let us apply in (58) to Qi(Bm, hm), i 6 n −m − 1, Lemma 1 (see (26)). To dj1(Bm), j 6
n−m− 1, let us apply the formula (55). By taking into account that dj,t(Bm) = dj,m+t(A)
for t > 2 and j = 1, 2, . . . , n−m (see (52)), we obtain

dn−m,1(Bm)
(58)
= P (dν,s(A), hk,k+p), (59)

where P is a polynomial of degree no more than 1 in dν,s(A), ν < n −m, s = 1, . . . , n and
hk,k+p, k = 0, 1, . . . ,m; p = 1, . . . , n−m. From (55) at j = n−m it follows

dn−m,1(Bm) = dn−m,m+1(A) + dn−m,m(A) + . . .+ dn−m,1(A) + P̃m,n−m, (60)

P̃m,n−m = P̃m,n−m(hk,k+p, dν,s(A)) is the polynomial in hk,k+p, k = 0, 1, . . . ,m − 1; p =
1, 2, . . . , n −m, and dν,s(A), s = 1, 2, . . . , n; ν 6 n −m − 1, of degree no more than 1. By
taking into account the definition of Hn−m(A) (19) and also the equalities (59), (60) and
properties of the polynomials P (dν,s(A), hm,m+p), P̃m,n−m we obtain

Hn−m(A) = dn−m,m+1(A) + dn−m,m(A) + . . .+ dn−m,1(A) = Rm,n−m, (61)

Rm,n−m = Rm,n−m(hk,k+p, dν,s(A)) is a polynomial in hk,k+p, k = 0, 1, . . . ,m;
p = 1, 2, . . . , n − m, and dν,s(A), s = 1, 2, . . . , n; ν 6 n − m − 1, of degree no more than
1 in every variable. From the equality (61) and by taking into account properties of the
polynomials Rm,n−m we obtain (r ̸∈ E)

m(r,Hn−m(A))
(8)
6

∑
k=0,1,...,m,
p=1,...,n−m

m(r, hk,k+p) +
∑

s=1,2,...,n,
ν6n−m−1

m(r, dν,s(A))+

+O(1)
(54)
= O

(
ln+

(
max

i=0,1,...,m
T (r,Wi)

)
+ ln r

)
+

∑
s=1,2,...,n,
ν6n−m−1

m(r, dν,s(A)).
(62)

From (20) we have

βνs
def
= σ0

φ[dνs] < σ0
φ[Hn−m(A)]

def
= α; max βνs

def
= β < α, (63)

s = 1, . . . , n; ν = 1, . . . , n−m+ 1. Similar to (40) we obtain

m(r, dνs) < lnφ−1(ln rβ+ε), ε > 0. (64)

Let us denote

σi = σ1
φ[Wi], i = 0, 1, . . . ,m; σ = maxσi

(21)
< σ1

φ[Hn−m(A)]. (65)

Then by taking into account (16) we obtain

T (r,Wi) < φ−1(ln rσi+ε) 6 φ−1(ln rσ+ε), ε > 0, r > r0. (66)
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From (14), (62), (64), (66) it follows (K = const > 0)

m(r,Hn−m(A)) < K(lnφ−1(ln rσ+ε) + lnφ−1(ln rβ+ε)) < 2K lnφ−1(ln rmax(σ,β)+ε), r ̸∈ E.

Similar to (33) we obtain

m(r,Hn−m(A)) = O(lnφ−1(ln rmax(σ,β)+2ε)), r > r0, ε > 0.

Thus

φ
(
em(r,Hn−m(A))

)
= φ

(
eO(lnφ−1(ln rmax(σ,β)+2ε))

) (13)
<

< (1 + o(1))φ
(
elnφ−1(ln rmax(σ,β)+2ε)

)
= (1 + o(1)) ln rmax(σ,β)+2ε.

From here and from (12) we have σ0
φ[Hn−m(A)] 6 max(σ, β), which contradicts (63), (65).

The case where in (2) some of pj ≡ 0, shall be considered in a way similar to [2]. The
proof of Theorem 2 is similar to that of Theorem 1.

Proof of Lemma 3. By taking into account (45) let us represent dj1(Bm) via the determinants
of the matrix Bm−1 (B0 = A, d0,j+2(Bm−1) = 1 (see (19), (2)))

dj1(Bm) = dj2(Bm−1) +Qj(Bm−1, hm−1) +

j−1∑
i=1

Qi(Bm−1, hm−1)dj−i,i+2(Bm−1). (67)

By using (24) we have Q0(A, h) ≡ 1, Q1(A, h) = s1 − h1 = d11(A)− h1,

Q0(Bm−1, hm−1) ≡ 1, Q1(Bm−1, hm−1) = d11(Bm−1)− hm−1,m,

where hm−1 = (hm−1,m;hm−1,m+1; . . . ;hm−1,n), hm−1,m+i =
v′m−1,m+i

vm−1,m+i
, i = 0, 1, . . . , n−m. Thus

(d0,j+1(Bm−1) = 1)

Qj(Bm−1, hm−1)
(25)
= dj,1(Bm−1)− hm−1,mdj−1,2(Bm−1)−

−(d11(Bm−1)− hm−1,m)hm−1,m+1dj−2,3(Bm−1)−

−
j−1∑
i=2

Qi(Bm−1, hm−1)hm−1,m+idj−i−1,i+2(Bm−1)
(26)
=

= dj,1 − hm−1,mdj−1,2 − (d11 − hm−1,m)hm−1,m+1dj−2,3−

−
j−1∑
i=2

(
di1 − di−1,1hm−1,m−1+i +

i−2∑
t=0

dt1Pti

)
hm−1,m+idj−i−1,i+2,

(68)

where dt1=dt1(Bm−1);Pti=Pti(hm−1,m−1+p, dν,s(Bm−1)) are some polynomials in hm−1,m−1+p

and dν,s(Bm−1); p = t+1, t+2, . . . , i; s = t+2, t+3, . . . , i; ν 6 i−1; i = 2, 3, . . . , j−1; t =
0, 1, . . . , i− 2 of degree no more than 1 in every hm−1,m−1+p and dν,s(Bm−1). By grouping in
(68) the summands that contain di1 = di1(Bm−1), i = 0, 1, . . . , j − 1, we obtain (d0i = 1)

Qj(Bm−1, hm−1) = dj,1(Bm−1) +

j−1∑
i=0

di1(Bm−1)P
∗
ij(hm−1,m−1+p, dν,s(Bm−1)), (69)

P ∗
ij(hm−1,m−1+p, dν,s(Bm−1)) are polynomials in hm−1,m−1+p and dν,s(Bm−1); p = i + 1, i +

2, . . . , j; s = i+ 2, i+ 3, . . . , j; ν 6 j − 1; i = 0, 1, . . . , j − 1, of degree no more than 1 on
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every of hm−1,m−1+p and dν,s(Bm−1). By transforming the sum in the right hand side of (67)
(Q1(Bm−1, hm−1) = d11 − hm−1,m):

j−1∑
i=1

Qi(Bm−1, hm−1)dj−i,i+2(Bm−1)
(26)
= (d11 − hm−1,m)dj−1,3+

+
j−1∑
i=2

(
di1 − di−1,1hm−1,m−1+i +

i−2∑
t=0

dt1Pti

)
dj−i,i+2 =

=
j−1∑
i=0

di1(Bm−1)P
⋆
ij(hm−1,m−1+p, dν,s(Bm−1)), d01(Bm−1) = 1,

(70)

where the polynomials Pti = Pti(hm−1,m−1+p, dν,s(Bm−1)) are the same as in (68);
P ⋆
ij(hm−1,m−1+p, dν,s(Bm−1)) are polynomials in hm−1,m−1+p and dν,s, of degree no more than

1 in every hm−1,m−1+p and dν,s(Bm−1); p = i + 1, i + 2, . . . , j; s = i + 2, i + 3, . . . , j + 1;
ν 6 j − 1; i = 1, . . . , j − 1. By substituting (69), (70) into (67) and then grouping the
summands with di1(Bm−1), we obtain

dj1(Bm) = dj,1(Bm−1) + dj2(Bm−1) +

j−1∑
i=0

di1(Bm−1)Pij, (71)

Pij = Pij(hm−1,m−1+p, dν,s(Bm−1)) are polynomial in hm−1,m−1+p and dν,s(Bm−1), of degree
no more than 1 in every hm−1,m−1+p and dν,s(Bm−1); p = i + 1, i + 2, . . . , j; s = i + 2,
i + 3, . . . , j + 1; ν 6 j − 1; i = 1, 2, . . . , j − 1. But (see (52), (44), (18)) dν,s(Bm−1) =
dν,m+s−1(A) at s > 2. Thus

dj1(Bm) = dj,1(Bm−1) + dj,m+1(A) +

j−1∑
i=0

di1(Bm−1)Pij(hm−1,m−1+p, dν,m+s−1), (72)

Pij(hm−1,m−1+p, dν,m+s−1(A)) are polynomials in hm−1,m−1+p and dν,m+s−1(A), of degree no
more than 1 on every hm−1,m−1+p and dν,m+s−1(A); p = i + 1, i + 2, . . . , j; s = i + 2,
i+ 3, . . . , j + 1; ν 6 j − 1; i = 1, 2, . . . , j − 1.

Let us prove the formula (55). If m = 1 then from (72) it follows (B0 = A, h0 =
(w′

01/w01, . . . , w
′
0n/w0n), h0,p = w′

0p/w0p (see (45)))

di1(B1) = di,1(A) + di,2(A) +
i−1∑
t=0

dt1(A)Pti(h0,p; dν,s(A)) =

= di,1(A) + di,2(A) + P̃1i, i ∈ N, i 6 n− 1,
(73)

P̃1i is a polynomial in h0,p and dν,s(A), p = 1, 2, . . . , i; s = 1, 2, . . . , i + 1; ν < i of degree
no more than 1 in every of the functions.

Let for every i ∈ N, i 6 j 6 n−m, 2 6 m the following equality take place

di1(Bm−1) = di,1(A) + di,2(A) + . . .+ di,m(A) + P̃m−1,i, i 6 n−m, (74)

P̃m−1,i is a polynomial in h0p, h1,p+1, . . . , hm−2,m−2+p and dν,s(A); p = 1, 2, . . . , i; s = 1, 2,
. . . , i+m− 1; ν < i of degree no more than 1 in every of hk,k+t and dν,s(A). By substituting
(74) into (72) we obtain

dj1(Bm) = dj,1(A) + dj,2(A) + . . .+ dj,m(A) + dj,m+1(A) + P̃m−1,j+

+
j−1∑
i=0

(di,1(A) + . . .+ di,m(A) + P̃m−1,i)Pij(hm−1,m−1+p, dν,m+s−1(A)) =

= dj,1(A) + dj,2(A) + . . .+ dj,m+1(A) + P̃m,j,
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P̃m,j is a polynomial in h0p, h1,p+1, . . . , hm−1,m−1+p and dν,s(A); p = 1, 2, . . . , j; s = 1, 2, . . . ,
j + m; ν < j of degree no more than 1 on every hk,k+t and dν,s(A). Here we took into
account that P̃m−1,i contains dν,s(A) with indices s = 1, 2, . . . , i+m− 1 and Pij(hm−1,m−1+p,
dν,m+s−1(A)) contain dν,m+s−1(A) with indexes s = i+2, i+3, . . . , j+1. Then P̃m−1,i includes
also h0p, h1,p+1, . . . , hm−2,m−2+p at p = 1, 2, . . . , i and Pij(hm−1,m−1+p, dν,m+s−1(A)) contain
hm−1,m−1+p with indices p = i+ 1, i+ 2, . . . , j.
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