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In this paper, we investigate a composition of entire function of one variable and analytic
function in the unit ball. There are obtained conditions which provide equivalence of bounded-
ness of L-index in a direction for such a composition and boundedness of l-index of initial
function of one variable, where the continuous function L : Bn → R+ is constructed by the
continuous function l : C → R+. We present sufficient conditions for boundedness of L-index
in the direction for sum and for product of functions analytic in the unit ball.

The class of analytic functions in the unit ball having bounded L-index in direction is
very wide because it contains all analytic functions with bounded multiplicities of zeros on
every complex line {z0 + tb : t ∈ C}. It is a statement of proved existence theorem. In the
one-dimensional case these results are new for functions analytic in the unit disc.

1. Introduction. Let Bn = {z ∈ Cn : |z| < 1}. The paper is a continuation of [2, 6, 7].
There was generalized a concept of L-index boundedness in a direction for a class of analytic
functions in the unit ball (see the definition below), including many criteria of L-index boun-
dedness in the direction, where L : Bn → R+ is a continuous function.

In this paper, we will apply some obtained results from [6] to deduce sufficient conditions
of L-index boundedness in direction for some composite analytic functions in the unit ball and
sum of these functions. Also we prove that analytic functions in the unit ball has bounded L-
index in any direction for compactly embedded domain in the unit ball. Among other results
we show that for any analytic function F : Bn → C with bounded multiplicities of zeros on
every complex line {z0 + tb : t ∈ C} and any direction b ∈ Cn \ {0} there exists a positive
continuous function L : Bn → R+ such that F is of bounded L-index in the direction b.
Mostly obtained results are also new for functions analytic in the unit disc.

Note that investigation of properties of analytic functions having bounded L-index in di-
rection is very important in view of analytic theory of differential equations. These functions
have regular behavior, uniform distribution of zeros in some sense and its growth estimates
[15,24]. It is known many various conditions providing index boundedness for every analytic
solutions of some ordinary and partial differential equations and its system [14,15,24,27].
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Let D = {t ∈ C : |t| < 1}, L : Bn → R+ be a continuous function, b = (b1, . . . , bn) ∈
Cn \ {0} be a fixed direction, where 0 = (0, . . . , 0), 1 = (1, . . . , 1). For z ∈ Bn we denote
Dz = {t ∈ C : |t| ≤ 1−|z|

|b| },

λb(η) = sup
z∈Bn

sup
t1,t2∈Dz

{
L(z + t1b)

L(z + t2b)
: |t1 − t2| ≤

η

min{L(z + t1b), L(z + t2b)}

}
.

The notation Qb(Bn) stands for the class of positive continuous functions L : Bn → R+

satisfying
(∀η ∈ [0, β]) : λb(η) < +∞ (1)

and
L(z) >

β|b|
1− |z|

, (2)

where β > 1 is some constant. If n = 1 then Q(D) ≡ Q1(B1) and λ(η) ≡ λ1(η).
Similarly, Qn

b stands for the class of positive continuous functions L : Cn → R+ satisfying
(1) with

λb(η) = sup
z∈Cn

sup
t1,t2∈C

{
L(z + t1b)

L(z + t2b)
: |t1 − t2| ≤

η

min{L(z + t1b), L(z + t2b)}

}
.

2. Composition of entire functions of bounded L-index in direction. Analytic functi-
on F : Bn → C is called a function of bounded L-index [5–7,10] in a direction b ∈ Cn \ {0},
if there exists m0 ∈ Z+ such that for every m ∈ Z+ and for each z ∈ Bn

|∂m
b F (z)|

m!Lm(z)
≤ max

0≤k≤m0

|∂k
bF (z)|

k!Lk(z)
, (3)

where

∂0
bF (z) = F (z), ∂bF (z) =

n∑
j=1

∂F (z)

∂zj
bj, ∂k

bF (z) = ∂b

(
∂k−1
b F (z)

)
, k ≥ 2.

There are also papers on analytic functions in the unit ball of bounded L-index in joint
variables [4,9]. A connection between these classes is established in [10,11]. The least integer
m0 = m0(b) satisfying (3) is called the L-index in the direction b of the analytic function
F and is denoted by Nb(F,L) = m0. If n = 1, b = 1, L = l, F = f, then N(f, l) ≡ N1(f, l)
is called the l-index of the function f. In the case n = 1 and b = 1 we obtain the definition
of an analytic function in the unit disc of bounded l-index ( [25]). Similarly, entire function
F : Cn → C is called a function of bounded L-index in a direction b ∈ Cn \ {0}, if it satisfies
(3) for all z ∈ Cn. If n = 1 and L = l we obtain the definition of bounded l-index for entire
functions of one variable [20], and if, in addition, l ≡ 1 we have the definition of an entire
function of bounded index [21]. Theory of entire functions of bounded L-index in direction
is developed in [15].

There are many papers on various classes of functions of bounded index (see bibliography
[15, 24]). Nevertheless index boundedness of composite entire and analytic functions were
considered only in [16,18,19,22,24]. In paper [22], there investigated l-index boudnedness of
composition f(P (z)), where f is an entire function and P is a polynomial. In [18] there were
presented conditions which provide l-index boundedness of the function f(w(z)), where f is
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a function analytic in the unit disc D = {z ∈ C : |z| < 1}, w(z) = z−z0
1−zz0

eiα, z0 ∈ D, α ∈ R.
The most general result of such type was obtained in [19] for composite analytic function in
arbitrary domains in complex plane. M. M. Sheremeta [24, p. 99] also proved that an entire
function f(z) has bounded index if and only if the analytic function f(1

z
) in C \ {0} has

bounded l-index with l(z) = 1
|z|2 .

Note that the multidimensional case [13, 16] was considered for the composition of two
entire functions, where one of them is an entire function of several variables. The most general
result is the following

Theorem 1 ( [16]). Let b ∈ Cn \ {0}, f be an entire function in C, Φ be an entire function
in Cn such that ∂bΦ(z) ̸= 0 and |∂j

bΦ(z)| ≤ K|∂bΦ(z)|j, K ≡ const > 0, for all z ∈ Cn and
for all j ≤ p, where p = N(f, l) or p = Nb(F,L), respectively.

Suppose that l ∈ Q, l(w) ≥ 1, w ∈ C and L ∈ Qn
b, L(z) =

∣∣∂bΦ(z)∣∣l(Φ(z)). The entire
function f has bounded l-index if and only if the entire function F (z) = f(Φ(z)) has bounded
L-index in the direction b.

Similar result ( [19]) is also known for functions analytic in an arbitrary domain in the
complex plane.

Our main theorem is the following

Theorem 2. Let b ∈ Cn\{0}, f : Cm → C be an entire function, Φ: Bn → C be an analytic
function, such that ∂bΦ(z) ̸= 0 and

|∂j
bΦ(z)| ≤ K|∂bΦ(z)|j, K ≡ const > 0, (4)

for all z ∈ Bn and for all j ≤ p, where p = N1(f, l) or p = Nb(F,L), respective.
Suppose that l ∈ Qm

1 , l(w) ≥ 1 (w ∈ Cm), L ∈ Qb(Bn), L(z) =
∣∣∂bΦ(z)∣∣l(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸

m times

).

The entire function f has bounded l-index in the direction 1 if and only if the analytic
function F (z) = f(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸

m times

) has bounded L-index in the direction b.

To prove main theorem we need auxiliary propositions. They are analogs of Hayman’s
Theorem for entire functions and analytic functions in the unit ball. It was firstly proved by
W. Hayman ([17]) for entire functions of one variable having bounded index.

Theorem 3 ([12]). Let b ∈ Cn \ {0} and L ∈ Qn
b. An entire function F (z) has bounded

L-index in the direction b if and only if there exist numbers p ∈ Z+, R > 0 and C > 0 such
that for every z ∈ Cn, |z| ≥ R,

|∂p+1
b F (z)|
Lp+1(z)

≤ Cmax

{
|∂k

bF (z)|
Lk(z)

: 0 ≤ k ≤ p

}
. (5)

Theorem 4 ([5,6]). Let b ∈ Cn \ {0} and L ∈ Qb(Bn). An analytic function F : Bn → C is
of bounded L-index in the direction b if and only if there exist p ∈ Z+ and C > 0 such that
for every z ∈ Bn inequality (5) holds.

Proof of Theorem 2. Denote ∇f = ∂1f =
∑m

j=1
∂f
∂zj

, ∇kf ≡ ∂k
1f for k ≥ 2. Our proof is

similar to the proof of the corresponding theorem in [16]. Firstly, we prove that

∂k
bF (z) = ∇kf(Φ(z), . . . ,Φ(z)) (∂bΦ(z))

k +
k−1∑
j=1

∇jf(Φ(z), . . . ,Φ(z))Qj,k(z), (6)
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where

Qj,k(z)=
∑

n1+2n2+...+knk=k
0≤n1≤j−1

cj,k,n1,...,nk
(∂bΦ(z))

n1
(
∂2
bΦ(z)

)n2 . . .
(
∂k
bΦ(z)

)nk ,

and cj,k,n1,...,nk
are non-negative integer numbers. We also will show that

∇kf(Φ(z), . . . ,Φ(z)) =
∂k
bF (z)(

∂bΦ(z)
)k +

1(
∂bΦ(z)

)2k k−1∑
j=1

∂j
bF (z) (∂bΦ(z))

j Q∗
j,k(z), (7)

where

Q∗
j,k(z)=

∑
m1+2m2+...+kmk=2(k−j)

bj,k,m1,...,mk
(∂bΦ(z))

m1
(
∂2
bΦ(z)

)m2 . . .
(
∂k
bΦ(z)

)mk ,

and bj,k,m1,...,mk
are some integer coefficients.

The validity of formulas (6) and (7) will be checked by the method of mathematical
induction. Of course, for k = 1 equalities (6) and (7) hold. Assume that they are valid for
k = s. Let us to prove them for k = s+ 1. Evaluate directional derivative in (6)

∂s+1
b F (z)=∇s+1f(Φ(z), . . . ,Φ(z)) (∂bΦ(z))

s+1 + s∇sf(Φ(z), . . . ,Φ(z)) (∂bΦ(z))
s−1 ∂2

bΦ(z)+

+
s−1∑
j=1

(
∇j+1f(Φ(z), . . . ,Φ(z))∂bΦ(z)Qj,s(z) +∇jf(Φ(z), . . . ,Φ(z))∂bQj,s(z)

)
=

= ∇s+1f(Φ(z), . . . ,Φ(z)) (∂bΦ(z))
s+1 +

+∇sf(Φ(z), . . . ,Φ(z))
(
s (∂bΦ(z))

s−1 ∂2
bΦ(z) + ∂bΦ(z)Qs−1,s(z)

)
+

+
s−1∑
j=2

∇jf(Φ(z), . . . ,Φ(z)) (∂bΦ(z)Qj−1,s(z) + ∂bQj,s(z)) +∇f(Φ(z), . . . ,Φ(z))∂bQ1,s(z).

Since

s (∂bΦ(z))
s−1 ∂2

bΦ(z) +
∑

n1+2n2+...+sns=s
0≤n1≤s−2

cs−1,s,n1,...,ns (∂bΦ(z))
n1+1 (∂2

bΦ(z)
)
. . . (∂s

bΦ(z))
ns =

=
∑

m1+2m2+...+sms=s+1
0≤m1≤s−1

c̃s,s+1,m1,...,ms (∂bΦ(z))
m1
(
∂2
bΦ(z)

)m2 . . . (∂s
bΦ(z))

ms = Qs,s+1(z),

∂bQ1,s(z) =
∑

2n2+...+sns=s

c1,s,0,n2,...,ns

(
n2

(
∂2
bΦ(z)

)n2−1 (
∂3
bΦ(z)

)n3+1
. . . (∂s

bΦ(z))
ns +

+ . . .+ ns

(
∂2
bΦ(z)

)n2
(
∂3
bΦ(z)

)n3 . . . (∂s
bΦ(z))

ns−1 ∂s+1
b Φ(z)

)
=

=
∑

2m2+...+(s+1)ms+1=s+1

c̃1,s+1,0,m2,...,ms+1

(
∂2
bΦ(z)

)m2 . . . (∂s
bΦ(z))

ms ×

×
(
∂s+1
b Φ(z)

)ms+1 = Q1,s+1(z),

∂bΦ(z)Qj−1,s(z) + ∂bQj,s(z) =

=
∑

n1+2n2+...+sns=s
0≤n1≤j−2

cj−1,s,n1,...,ns (∂bΦ(z))
n1+1 (∂2

bΦ(z)
)n2 . . . (∂s

bΦ(z))
ns +
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+
∑

n1+2n2+...+kns=s
0≤n1≤j−1

cj,s,n1,n2,...,ns

(
n1 (∂bΦ(z))

n1−1 (∂2
bΦ(z)

)n2+1
. . . (∂s

bΦ(z))
ns +

+ . . .+ ns (∂bΦ(z))
n1
(
∂2
bΦ(z)

)n2 . . . (∂s
bΦ(z))

ns−1 ∂s+1
b Φ(z)

)
=

∑
m1+2m2+...+(s+1)ms+1=s+1

0≤m1≤j−1

c̃j,s+1,m1,...,ms+1(∂bΦ(z))
n1 . . .(∂s

bΦ(z))
ns
(
∂s+1
b Φ(z)

)ns+1 =Qj,s+1(z),

we obtain (6) with s+ 1 instead of k.
Using mathematical induction as in (6) it can be proved that (7) holds. After differenti-

ation in the direction b equation (7) gives

∇s+1f(Φ(z), . . . ,Φ(z)) =
∂s+1
b F (z)(

∂bΦ(z)
)s+1 − s∂2

bΦ(z)∂
s
bF (z) (∂bΦ(z))

−s−2+

+
s−1∑
j=1

{
∂j+1
b F (z) (∂bΦ(z))

j−2s−1 Q∗
j,s(z)+

+∂j
bF (z) (∂bΦ(z))

j−2s−2 ((j − 2s)∂2
bΦ(z)Q

∗
j,s(z) + ∂bΦ(z)∂bQ

∗
j,s(z)

)}
=

=
∂s+1
b F (z)(

∂bΦ(z)
)s+1 + ∂s

bF (z) (∂bΦ(z))
−s−2

(
− s∂2

bΦ(z) +Q∗
s−1,s(z)

)
+

+
s−1∑
j=2

{
∂j
bF (z) (∂bΦ(z))

j−2s−2 (∂bΦ(z)∂bQ∗
j,s(z) + (j − 2s)∂2

bΦ(z)Q
∗
j,s(z) +Q∗

j−1,s(z)
)}

+

+∂bF (z) (∂bΦ(z))
−2s−1 ((1− 2s)∂2

bΦ(z)Q
∗
1,s(z) + ∂bΦ(z)∂bQ

∗
1,s(z)

)
.

Since

−s∂2
bΦ(z) +Q∗

s−1,s(z) = (−s+ bs−1,s,m1,...,ms)∂
2
bΦ(z) =

=
∑

m1+2m2+...+sms+
+(s+1)ms+1=2

b̃s,s+1,m1,...,ms+1 (∂bΦ(z))
m1 . . . (∂s

bF (z))ms ×

×
(
∂ms+1
b F (z)

)ms+1
= Q∗

s,s+1(z),

(1− 2s)∂2
bΦ(z)Q

∗
1,s(z) + ∂bΦ(z)∂bQ

∗
1,s(z) = (1− 2s)×

×
∑

m1+2m2+...+sms=
=2s−2

b1,s,m1,...,ms (∂bΦ(z))
m1
(
∂2
bΦ(z)

)m2+1
. . . (∂s

bF (z))ms +

+
∑

m1+2m2+...+sms=
=2s−2

b1,s,m1,...,ms

{
m1 (∂bΦ(z))

m1
(
∂2
bΦ(z)

)m2+1
. . . (∂s

bF (z))ms +

+m2 (∂bΦ(z))
m1+1 (∂2

bΦ(z)
)m2−1 (

∂3
bΦ(z)

)m3+1
. . . (∂s

bF (z))ms + . . .+

+ms (∂bΦ(z))
m1+1 . . . (∂s

bF (z))ms−1 ∂s+1
b Φ(z)

}
=

=
∑

m1+2m2+...+sms+
+(s+1)ms+1=2s

b̃1,s+1,m1,...,ms+1 (∂bΦ(z))
m1 . . . (∂s

bF (z))ms
(
∂s+1
b Φ(z)

)ms+1 = Q∗
1,s+1(z),

and

∂bΦ(z)∂bQ
∗
j,s(z) + (j − 2s)∂2

bΦ(z)Q
∗
j,s(z) +Q∗

j−1,s(z) =
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=
∑

m1+2m2+...+sms=

=2(s−j)

bj,s,m1,...,ms

{
m1 (∂bΦ(z))

m1
(
∂2
bΦ(z)

)m2+1
. . . (∂s

bF (z))ms +

+ . . .+ms (∂bΦ(z))
m1+1 (∂2

bΦ(z)
)m2 . . . (∂s

bF (z))ms−1 ∂s+1
b Φ(z)

}
+

+(j−2s)
∑

m1+2m2+...+sms=

=2(s−j)

bj,s,m1,...,ms(∂bΦ(z))
m1
(
∂2
bΦ(z)

)n2+1
. . .(∂s

bF (z))ms +

+
∑

m1+2m2+...+sms=

=2(s−j)+2

bj−1,s,m1,...,ms (∂bΦ(z))
m1 . . . (∂s

bF (z))ms =

=
∑

m1+2m2+...+sms+

+(s+1)ms+1=2(s+1−j)

b̃j,s+1,m1,...,ms+1 (∂bΦ(z))
m1 . . .

(
∂s+1
b Φ(z)

)ms+1 = Q∗
j,s+1(z),

we conclude that (6) is valid with s+ 1 instead of k.
Let f be an entire function of bounded l-index. By Theorem 3 inequality (5) holds for

n = m, F = f, L = l, b = 1. Taking into account (4) and (6), for k = p+ 1 we obtain

|∂p+1
b F (z)|
Lp+1(z)

≤ |∇p+1f(Φ(z), . . . ,Φ(z))|
Lp+1(z)

|∂bΦ(z)|p+1 +

p∑
j=1

|∇jf(Φ(z), . . . ,Φ(z))||Qj,p+1(z)|
Lp+1(z)

≤

≤ max

{
|∇kf(Φ(z), . . . ,Φ(z))|

lk(Φ(z))
: 0 ≤ k ≤ p

}(
C +

p∑
j=1

|Qj,p+1(z)|
lp+1−j(Φ(z))|∂bΦ(z)|p+1

)
≤

≤max

{
|∇kf(Φ(z), . . . ,Φ(z))|

lk(Φ(z))
: 0 ≤ k ≤ p

}C +

p∑
j=1

∑
n1+2n2+...+(p+1)np+1=p+1

0≤n1≤j−1

cj,p+1,n1,...,np+1×

×
| (∂bΦ(z))n1 (∂2

bΦ(z))
n2 . . .

(
∂p+1
b Φ(z)

)np+1 |
lp+1−j(Φ(z))|∂bΦ(z)|p+1

)
≤max

{
|∇kf(Φ(z), . . . ,Φ(z))|

lk(Φ(z))
: 0≤k≤p

}
×

×

C +

p∑
j=1

∑
n1+2n2+...+(p+1)np+1=p+1

0≤n1≤j−1

cj,p+1,n1,...,np+1K
p+1

lp+1−j(Φ(z))

 ≤ C1 max
0≤k≤p

|∇kf(Φ(z), . . . ,Φ(z))|
lk(Φ(z))

.

Using (7), we find the upper estimate for the fraction |∇kf(Φ(z),...,Φ(z))|
lk(Φ(z))

:

|∇kf(Φ(z), . . . ,Φ(z))|
lk(Φ(z))

≤ |∂k
bF (z)|

lk(Φ(z))|∂bΦ(z)|k
+

k−1∑
j=1

|∂j
bF (z)||Q∗

j,k(z)|
lk(Φ(z))|∂bΦ(z)|2k−j

≤

≤ max

{
1

Lj(z)

∣∣∣∣∂j
bF (z)

∣∣∣∣ : 1 ≤ j ≤ k

}(
1 +

k−1∑
j=1

|Q∗
j,k(z)|

lk−j(Φ(z))|∂bΦ(z)|2(k−j)

)
≤

≤ max

{
1

Lj(z)

∣∣∣∣∂j
bF (z)

∣∣∣∣ : 1 ≤ j ≤ k

}1 +
k−1∑
j=1

∑
m1+2m2+...+kmk=2(k−j)

|bj,k,m1,...,mk
|×

×
| (∂bΦ(z))m1 (∂2

bΦ(z))
m2 . . .

(
∂k
bΦ(z)

)mk |
lk−j(Φ(z))|∂bΦ(z)|2(k−j)

)
≤ max

{
|∂j

bF (z)|
Lj(z)

: 1 ≤ j ≤ k

}
×
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×

1 +
k−1∑
j=1

∑
m1+2m2+...+kmk=2(k−j)

|bj,k,m1,...,mk
|Kk

lk−j(Φ(z))

≤C2 max
1≤j≤k

|∂j
bF (z)|
Lj(z)

.

Hence, it follows that

|∂p+1
b F (z)|
Lp+1(z)

≤ C1C2 max

{
|∂k

bF (z)|
Lk(z)

: 0 ≤ k ≤ p

}
.

Therefore, by Theorem 4 the last inequality means that the function F has bounded L-index
in the direction b.

Conversely, suppose that the function F is of bounded L-index in the direction b. Then
it satisfies (5). In view of (4) and (7), we deduce

|∇p+1f(Φ(z), . . . ,Φ(z))|
lp+1(Φ(z))

≤ |∂p+1
b F (z)|

lp+1(Φ(z))|∂bΦ(z)|p+1
+

p∑
j=1

|∂j
bF (z)||Q∗

j,p+1(z)|
lp+1(Φ(z))|∂bΦ(z)|2p+2−j

≤

≤ max

{
|∂k

bF (z)|
Lk(z)

: 0 ≤ k ≤ p

}(
C +

p∑
j=1

|Q∗
j,p+1(z)|

lp+1−j(Φ(z))|∂bΦ(z)|2(p+1−j)

)
≤

≤ max

{
|∂k

bF (z)|
Lk(z)

: 0 ≤ k ≤ p

}C +

p∑
j=1

∑
m1+...+(p+1)mp+1=

=2(p+1−j)

|bj,p+1,m1,...,mp+1 |×

×
| (∂bΦ(z))m1 (∂2

bΦ(z))
m2 . . .

(
∂p+1
b Φ(z)

)mp+1 |
lp+1−j(Φ(z))|∂bΦ(z)|2(p+1−j)

)
≤ max

{
|∂k

bF (z)|
Lk(z)

: 0 ≤ k ≤ p

}
×

×

C +

p∑
j=1

∑
m1+...+(p+1)mp+1=

=2(p+1−j)

|bj,p+1,m1,...,mp+1 |K2p+2−2j

lp+1−j(Φ(z))

≤C3max
0≤k≤p

|∂k
bF (z)|
Lk(z)

.

Applying (6), we estimate

|∂k
bF (z)|
Lk(z)

≤ |∇kf(Φ(z), . . . ,Φ(z))||φ′(z)|k

Lk(z)
+

k−1∑
j=1

|∇jf(Φ(z), . . . ,Φ(z))||Qj,k(z)|
Lk(z)

≤

≤ max

{
|∇jf(Φ(z), . . . ,Φ(z))|

lj(Φ(z))
: 1 ≤ j ≤ k

}(
1 +

k−1∑
j=1

|Qj,k(z)|
lk−j(Φ(z))|∂bΦ(z)|k

)
≤

≤ C4max

{
|∇jf(Φ(z), . . . ,Φ(z))|

lj(Φ(z))
: 1 ≤ j ≤ k

}
.

It implies that

|∇p+1f(Φ(z), . . . ,Φ(z))|
lp+1(Φ(z))

≤ C3C4 max

{
|∇jf(Φ(z), . . . ,Φ(z))|

lj(Φ(z))
: 0 ≤ j ≤ p

}
.

Thus, by Theorem 3 (n = m, F = f, L = l, b = 1) the function f has bounded
l-index.
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Note that the condition ∂bΦ(z) ̸= 0 in Theorem 1 is generated by our method of the proof.
In fact, we can remove it and prove more general proposition with some greater function L.

Theorem 5. Let b ∈ Cn\{0}, f : Cm → C be an entire function, Φ: Bn → C be an analytic
function, p = N1(f, l) or p = Nb(F,L) respective.

Suppose that l ∈ Qm
1 , l(w) ≥ 1, w ∈ Cm and L ∈ Qb(Bn) with

L(z) = max
1≤j≤p

{
1,
∣∣∂j

bΦ(z)
∣∣} l(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸

m times

).

The entire function f has bounded l-index in the direction 1 if and only if the analytic
function F (z) = f(Φ(z), . . . ,Φ(z)︸ ︷︷ ︸

m times

) has bounded L-index in the direction b.

The proof of this theorem is similar to that of Theorem 2 and also use analogs of Hayman’s
Theorem for entire functions of bounded L-index in direction (Theorems 3, 4).

Remark 1. One should observe that Theorems 2 and 5 are also new results in one-dimen-
sional case, i.e. in the case of analytic functions in the unit disc. Moreover, if we replace
the condition “Φ be an analytic function in the unit ball” by the condition “Φ be an entire
function of several variables” in these theorems then we also deduce new results for composite
entire functions. In comparison, there is removed the condition ∂bΦ(z) ̸= 0 and is considered
more general composition than in [16].

Note that for n = 1 the assumption in Theorem 2 are weaker than in [19] because we
require validity of (4) for j ≤ p instead all values j ∈ N.

3. Product theorem. To prove a theorem on product of analytic functions of bounded
L-index in direction we need auxiliary propositions.

Lemma 1 ( [5,6]). Let L ∈ Qb(Bn), 1
β
< θ1 ≤ θ2 < +∞, θ1L(z) ≤ L∗(z) ≤ θ2L(z). Analytic

function F (z) in Bn has bounded L∗-index in the direction b if and only if the function F
has bounded L-index in the direction b.

Let gz0(t) := F (z0+tb). If for given z0 ∈ Bn gz0(t) ̸= 0 for all t ∈ Dz0 , then Gb
r (F, z

0) :=
∅; if for given z0 ∈ Bn gz0(t) ≡ 0, then Gb

r (F, z
0) := {z0 + tb : t ∈ Dz0}. And if for some

z0 ∈ Bn gz0(t) ̸≡ 0 and a0k are zeros of the functions gz0(t), i.e., F (z0 + a0kb) = 0, then

Gb
r (F, z

0) :=
∪
k

{
z0 + tb : |t− a0k| ≤

r

L(z0 + a0kb)

}
, r > 0.

Let
Gb

r (F ) =
∪

z0∈Bn

Gb
r (F, z

0). (8)

By n
(
r, z0, 1/F

)
=
∑

|a0k|≤r 1 we denote counting functions of zeros a0k.

Theorem 6 ( [5,6]). Let F be an analytic function in Bn, L ∈ Qb(Bn) and Bn \Gb
β(F ) ̸= ∅.

The function F (z) has bounded L-index in the direction b if and only if

1) for every r ∈ (0, β] there exists P = P (r) > 0 such that for any z ∈ Bn\Gb
r (F )∣∣∣∣∂bF (z)

F (z)

∣∣∣∣ ≤ PL(z); (9)
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2) for each r ∈ (0, β] there exists ñ(r) ∈ Z+ such that for all z0 ∈ Bn with F (z0 + tb) ̸≡ 0
one has

n

(
r

L(z0)
, z0,

1

F

)
≤ ñ(r). (10)

Using Theorem 4 we prove the following

Theorem 7. Let L ∈ Qb(Bn). An analytic function F : Bn → C has bounded L-index in
the direction b if and only if there exist numbers C ∈ (0,+∞) and N ∈ N such that for all
z ∈ Bn

N∑
k=0

|∂k
bF (z)|

k!Lk(z)
≥ C

∞∑
k=N+1

|∂k
bF (z)|

k!Lk(z)
. (11)

Proof. Proof of this theorem is similar to the proof of its analogs for entire functions of
bounded L-index in direction [8] and for entire functions of bounded l-index [23].

Let 1
β
< θ < 1. If the function F is of bounded L-index in the direction b, then by

Lemma 1 F is also of bounded L∗-index in the direction b, where L∗(z) = θL(z). Denote
N∗ = Nb(F,L∗) and N = Nb(F,L). Thus,

max

{
|∂k

bF (z)|
k!Lk(z)

: 0 ≤ k ≤ N∗
}

= max

{
|∂k

bF (z)|
k!Lk

∗(z)
θk : 0 ≤ k ≤ N∗

}
≥

≥ θN
∗
max

{
|∂k

bF (z)|
k!Lk

∗(z)
: 0 ≤ k ≤ N∗

}
≥ θN

∗ |∂j
bF (z)|

j!Lj
∗(z)

= θN
∗−j |∂

j
bF (z)|

j!Lj(z)

for all j ≥ 0 and

∞∑
j=N∗+1

|∂j
bF (z)|

j!Lj(z)
≤ max

{
|∂k

bF (z)|
k!Lk(z)

: 0 ≤ k ≤ N∗
} ∞∑

j=N∗+1

θj−N∗
=

=
θ

1− θ
max

{
|∂k

bF (z)|
k!Lk(z)

: 0 ≤ k ≤ N∗
}

≤ θ

1− θ

N∗∑
k=0

|∂k
bF (z)|

k!Lk(z)
,

i.e. we obtain (11) with N = N∗ and C = 1−θ
θ
.

Now we prove the sufficiency. From (11) we obtain

|∂N+1
b F (z)|

(N + 1)!LN+1(z)
≤

∞∑
k=N+1

|∂k
bF (z)|

k!Lk(z)
≤ 1

C

N∑
k=0

|∂k
bF (z)|

k!Lk(z)
≤N + 1

C
max

{
|∂k

bF (z)|
k!Lk(z)

: 0≤k≤N

}
.

Applying Theorem 4, we obtain a desired conclusion.

We then consider an application of Theorem 6.

Theorem 8. Let L ∈ Qb(Bn), F : Bn → C be an analytic function of bounded L-index
in the direction b ∈ Cn \ {0}, Φ: Bn → C be an analytic function in the unit ball and
Ψ(z) = F (z)Φ(z). The function Ψ(z) is of bounded L-index in the direction b if and only if
the function Φ(z) is of bounded L-index in the direction b.
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Proof. The similar result was obtained for entire functions of bounded L-index in direction
in [8]. Our proof is similar to the proof for entire functions in [8] but now we use Theorem 6,
deduced for functions analytic in the unit ball. Since an analytic function F (z) has bounded
L-index in the direction b, by Theorem 6 for every r ∈ (0, β) there exists ñ(r) ∈ Z+ such
that for all z0 ∈ Bn, satisfying F (z0 + tb) ̸≡ 0, the estimate n

(
r

L(z0)
, z0, 1

F

)
≤ ñ(r) holds.

Hence,

n

(
r

L(z0)
, z0,

1

Φ

)
≤ n

(
r

L(z0)
, z0,

1

Ψ

)
≤ n

(
r

L(z0)
, z0,

1

Φ

)
+ ñ(r).

Thus, condition 2 of Theorem 6 either holds or does not hold for functions Ψ(z) and Φ(z)
simultaneously. If Φ(z) has bounded L-index in the direction b, then for every r ∈ (0, β) there
exist numbers PF (r) > 0 and PΦ(r) > 0 such that

∣∣∣∂bF (z)
F (z)

∣∣∣ ≤ Pf (r)L(z),
∣∣∣∂bΦ(z)

Φ(z)

∣∣∣ ≤ PΦ(r)L(z)

for each z ∈ (Bn \Gb
r (F )) ∩ (Bn \Gb

r (Φ)). Since

Bn \Gb
r (Ψ) ⊂ (Bn \Gb

r (F )) ∩ (Bn \Gb
r (Φ)),

∣∣∣∣∂bΨ(z)

Ψ(z)

∣∣∣∣ ≤ ∣∣∣∣∂bF (z)

F (z)

∣∣∣∣+ ∣∣∣∣∂bΦ(z)Φ(z)

∣∣∣∣ ,
for all z ∈ Bn\Gb

r (Ψ) we have
∣∣∣∂bΨ(z)

Ψ(z)

∣∣∣ ≤ (PF (r)+PΦ(r))L(z), i.e. by Theorem 6 the function
Ψ(z) is of bounded L-index in the direction b.

On the contrary, let Ψ(z) be of bounded L-index in the direction b, r > 0. At first we
show that for every z0 ∈ Bn\Gb

r (F ) (r > 0) and for every d̃k = z0 + d0kb, where d0k are zeros
of function Φ(z0 + tb), we have

|z0 − d̃k| > r|b|
2L(z0)λb(r)

. (12)

On the other hand, let there exist z0 ∈ Bn\Gb
r (Φ) and d̃k = z0 + d0kb such that |z0 − d̃k| ≤

r|b|
2L(z0)λb(r)

. Then by the definition of λb we have the next estimate L(d̃k)≤λb(r)L(z
0). Hence

|z0 − d̃k| = |b| · |d0k| ≤
r|b|

2L(d̃k)
, i.e. |d0k| ≤ r

2L(d̃k)
, but it contradicts z0 ∈ Bn\Gb

r (Φ).
We consider

K0 =

{
z0 + tb : |t| ≤ r

2L(z0)λb (r)

}
.

It does not contain zeros of Φ(z0+tb), which may contain zeros c̃k = z0+c0kb of the function
Ψ(z0 + tb). Since Ψ(z) is of bounded L-index in the direction b, the set K0 by Theorem 6
contains at most ñ1 = ñ1(

r
2λb(r)

) zeros c0k of the function Ψ(z0 + tb). For all c0k ∈ K0, using
the definition of Qb(Bn), we obtain the following inequality

L(z0 + c0kb) ≥
1

λb

(
r

λb(r)

)L(z0).
Thus, every set m0

k = {z0+tb : |t−c0k| ≤ r1
L(z0+c0kb)

} with r1 =
r

4(ñ1+1)λb

(
r

λb(r)

)
λb(r)

is contained

in the set

s0k=

{
z0 + tb : |t− c0k| ≤

r1λb(
r

λb(r)
)

L(z0)

}
.
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The total sum of diameters of these sets does not exceed

2ñ1r1λb

(
r

λb(r)

)
L(z0)

=
r

2λb(r)L(z0)
· ñ1

(ñ1 + 1)
<

r

2λb(r)L(z0)
.

Therefore, there exists r∗ ∈
(
0, r

2λb(r)

)
such that if |t| = r∗

L(z0)
, then z0 + tb /∈ Gb

r1
(Ψ), and

therefore z0 + tb /∈ Gb
r1
(F ). By Theorem 6 for all these points z0 + tb we obtain∣∣∣∣∂bΦ(z0 + tb)

Φ(z0 + tb)

∣∣∣∣ ≤ ∣∣∣∣∂bΨ(z0 + tb)

Ψ(z0 + tb)

∣∣∣∣+ ∣∣∣∣∂bF (z0 + tb)

F (z0 + tb)

∣∣∣∣ ≤ (P ∗
Ψ + P ∗

F )L(z
0 + tb), (13)

where P ∗
Ψ and P ∗

F depend only on r1, i.e. only on r. Since the function ∂bΦ(z)
Φ(z)

is analytic

in K0, applying the maximum modulus principle to the function ∂bΦ(z0+tb)
Φ(z0+tb)

as a function of
variable t, we obtain that the modulus of this function at the point t = 0 does not exceed the
maximum modulus of this function on the circle {t ∈ C : |t| = r∗

L(z0)
}. It means that obtained

inequality (13) holds for z0.
Thus, for arbitrary r ∈ (0, β) and z0 ∈ Bn\Gb

r (F ) we have proved the first condition of
Theorem 6. Above we have already shown that the second condition of Theorem 6 is true.
Hence, by the mentioned theorem the function Φ(z) has bounded L-index in the direction b.

4. Boundedness of L-index in direction for sum of analytic functions. There are
known sufficient conditions of index boundedness for sum of two entire functions of one vari-
ables [26]. These results were generalized for entire functions of bounded L-index in directi-
on [1] and for entire functions of bounded index in joint variables [3]. But similar conditions
for analytic functions in the unit ball (or in the unit disk) are not known. Therefore, in this
subsection we consider the following question: what are sufficient conditions for L-index
boundedness in direction for the sum of two functions analytic in the unit ball?

We need the following theorem.

Theorem 9 ( [5,6]). Let β > 1, L ∈ Qb,β(Bn). An analytic function F (z) in Bn has bounded
L-index in the direction b ∈ Cn\{0} if and only if for any r1 and for any r2, 0 < r1 < r2 ≤ β,
there exists P1 = P1(r1, r2) ≥ 1 such that for each z0 ∈ Bn

max
{
|F (z0 + tb)| : |t|= r2

L(z0)

}
≤ P1 max

{
|F (z0+tb)| : |t|= r1

L(z0)

}
. (14)

Let us consider intersection of the hyperplane ⟨z,b⟩ = 0 with the unit ball. The intersecti-
on we denote by A = {z ∈ Bn : ⟨z,b⟩ = 0}, where ⟨z,b⟩ :=

∑n
j=1 zjbj. Obviously∪

z0∈A{z0 + tb : |t| ≤ 1−|z0|
|b| } = Bn.

Let z0 ∈ A be a given point. If F (z0 + tb) ̸≡ 0 as a function of variable t ∈ C, then there
exists t0 ∈ Dz0 such that F (z0 + t0b) ̸= 0. We denote

B(z0, t) =

{
t0 ∈ Dz0 : |t0 − t| < min

{
β

2L(z0 + tb)
,
1− |z0 + bt|

2|b|

}
, F (z0 + t0b) ̸= 0

}
,

B(z0) =
∪

|t|≤(1−|z0|)/|b|

B(z0, t).
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Theorem 10. Let L : Bn → R+ be a positive continuous function satisfying (2) with β ≥ 3,
and F : Bn → R+, G : Bn → R+ be analytic functions in the unit ball which obey the
following conditions:

1) G(z) has bounded L-index in the direction b ∈ Cn \ {0} with Nb(G,L) = N < +∞;

2) there exists α ∈ (0, 1) such that for all z ∈ Bn and p ≥ N + 1 (p ∈ N)

|∂p
bG(z)|

p!Lp(z)
≤ αmax

{
|∂k

bG(z)|
k!Lk(z)

: 0 ≤ k ≤ N

}
; (15)

3) for every z = z0+tb ∈ Bn with z0 ∈ A and some t0 ∈ B(z0, t) with r = |t−t0|L(z0+tb)
the inequality

max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
≤ max

{
|∂k

bG(z0 + tb)|
k!Lk(z0 + tb)

: 0 ≤ k ≤ N

}
;

(16)

is valid;

4) either (∃c > 0)(∀z0 ∈ A)(∀t ∈ Dz0) (∃t0 ∈ B(z0, t) obeying (16) and if |t − t0|L(z0 +
tb) ≤ 1) then

max
{
|F (z0 + t′b)| : |t′ − t0| =

2

L(z0 + tb)

}/
|F (z0 + t0b)| ≤ c < +∞,

or for L ∈ Qb(Bn) (∃c > 0)(∀z0 ∈ A) (∃t0 ∈ B(z0)) such that (16) is true and

max
{
|F (z0 + t′b)| : |t′ − t0| =

2λb(1)

L(z0 + t0b)

}/
|F (z0 + t0b)| ≤ c < +∞, (17)

where β ≥ 2λb(1).

Then for every ε ∈ C, |ε| ≤ 1−α
2c

, the function

H(z) = G(z) + εF (z) (18)

has bounded L-index in the direction b and Nb(H,L) ≤ N.

Proof. We write Cauchy’s formula for the analytic function F (z0 + tb) as function of one
complex variable t

∂p
bF (z0 + tb)

p!
=

1

2πi

∫
|t′−t|= r

L(z0+tb)

F (z0 + t′b)

(t′ − t)p+1
dt′. (19)

For the chosen r = |t− t0|L(z0 + tb) we deduce

r

L(z0 + tb)
= |t′ − t| ≥ |t′ − t0| − |t− t0| = |t′ − t0| −

r

L(z0 + tb)
.

Hence,

|t′ − t0| ≤
2r

L(z0 + tb)
. (20)
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Equality (19) yields

|∂p
bF (z0 + tb)|

p!Lp(z0 + tb)
≤ 1

2πLp(z0 + tb)
· L

p+1(z0 + tb)

rp+1
×

× 2πr

L(z0 + tb)
·max

{
|F (z0 + t′b)| : |t′ − t| = r

L(z0 + tb)

}
≤

≤ 1

rp
max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
. (21)

If r = |t− t0|L(z0 + tb) > 1, then (21) yields

|∂p
bF (z0 + tb)|

p!Lp(z0 + tb)
≤ max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
. (22)

Let r = |t− t0|L(z0 + tb) ∈ (0; 1]. Setting r = 1 in (19) and (20), we analogously deduce

|∂p
bF (z0 + tb)|

p!Lp(z0 + tb)
≤ max

{
|F (z0 + t′b)| : |t′ − t0| =

2

L(z0 + tb)

}
=

=
max

{
|F (z0 + t′b)| : |t′ − t0| = 2

L(z0+tb)

}
max

{
|F (z0 + t′b)| : |t′ − t0| = 2r

L(z0+tb)

} ×

×max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
≤

≤
max

{
|F (z0 + t′b)| : |t′ − t0| = 2

L(z0+tb)

}
|F (z0 + t0b)|

×

×max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
≤

≤ cmax

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
, (23)

where

c = sup
z0∈A,|t|<(1−|z0|)/|b|

max
{
|F (z0 + t′b)| : |t′ − t0| = 2

L(z0+tb)

}
|F (z0 + t0b)|

≥ 1

and t0 = t0(z, t) ∈ B(z0, t) is chosen in (16) and |t0−t| ≤ 1/L(z0+tb). From |t′−t0| = 2
L(z0+tb)

one has |t′| ≤ |t0|+ 2
L(z0+tb)

≤ |t|+ 3
L(z0+tb)

. Therefore, β ≥ 3.

If L ∈ Q, then sup
{

L(z0+t0b)
L(z0+tb)

: |t− t0| ≤ 1
L(z0+tb)

}
≤ λb(1). This means that L(z0+tb) ≥

L(z0+t0b)
λb(1)

. Using this inequality, we choose in (23)

c := sup
z0∈A

max
{
|F (z0 + t′b)| : |t′ − t0| = 2λb(1)

L(z0+t0b)

}
|F (z0 + t0b)|

≥ 1

with t0 chosen in (16). Taking into account (22) and (23), one has

|∂p
bF (z0 + tb)|

p!Lp(z0 + tb)
≤ cmax

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
(24)
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for all n ∈ N ∪ {0}, r ≥ 0, z0 ∈ A, t ∈ Dz0 .
We differentiate (18) p times, p ≥ N + 1, and then apply (15), (24) and (16)

|∂p
bH(z0 + tb)|
p!Lp(z0 + tb)

≤ |∂p
bG(z0 + tb)|

p!Lp(z0 + tb)
+

|ε||∂p
bF (z0 + tb)|

p!Lp(z0 + tb)
≤

≤ αmax

{
|∂k

bG(z0 + tb)|
k!Lk(z0 + tb)

: 0 ≤ k ≤ N

}
+

+c|ε|max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
≤

≤ (α+ c|ε|)max

{
|∂k

bG(z0 + tb)|
k!Lk(z0 + tb)

: 0 ≤ k ≤ N

}
. (25)

If s ≤ N, then (24) is valid for p = s, but (15) does not hold. Thus, the differentiation of
(18) leads to the following estimate

|∂s
bH(z0 + tb)|
s!Ls(z0 + tb)

≥ |∂S
bG(z0 + tb)|
s!Ls(z0 + tb)

− |ε||∂s
bF (z0 + tb)|

s!Ls(z0 + tb)
≥

≥ |∂s
bG(z0 + tb)|

s!Ls(z0 + tb)
− c|ε|max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
, (26)

where 0 ≤ s ≤ N. From (16) and (26) we deduce

max
0≤s≤N

{
|∂s

bH(z0 + tb)|
s!Ls(z0 + tb)

}
≥ (1− c|ε|) max

0≤s≤N

{
|∂s

bG(z0 + tb)|
s!Ls(z0 + tb)

}
. (27)

If c|ε| < 1, then (25) and (27) imply

|∂p
bH(z0 + tb)|
p!Lp(z0 + tb)

≤ α+ c|ε|
1− c|ε|

max
0≤s≤N

{
|∂s

bH(z0 + tb)|
s!Ls(z0 + tb)

}
(28)

for p ≥ N + 1. Assume that α+c|ε|
1−c|ε| ≤ 1. Hence, |ε| ≤ 1−α

2c
.

Let Nb(z
0 + tb, L, F ) be the L-index in the direction b of the function F at the point

z0 + tb, i.e. Nb(z
0 + tb, L, F ) is the smallest number m0 for which inequality (3) holds with

z = z0 + tb.
For |ε| ≤ 1−α

2c
validity of (28) means that for all z0 ∈ A and every t ∈ Dz0 such that

F (z0 + tb) ̸= 0 the L-index in the direction b at the point z0 + tb does not exceed N, i.e.,
Nb(z

0 + tb, F, L) ≤ N.
If for some z0 ∈ A F (z0 + tb) ≡ 0, then we have H(z0 + tb) ≡ G(z0 + tb) and

Nb(z
0+ tb, F, L) = Nb(z

0+ tb, G, L) ≤ N. Thus, H(z) has bounded L-index in the direction
b with Nb(H,L) ≤ N. It completes the proof of Theorem 10.

Remark 2. Every analytic function F : Bn → C with Nb(F,L) = 0 satisfies inequality (17)
(see proof of the necessity in [6, Theorem 2]).

If L ∈ Qb(Bn), then condition 2) in Theorem 10 always holds. The following theorem is
valid.

Theorem 11. Let L ∈ Qb(Bn), α ∈ (1/β, 1) and F, G be analytic functions in Bn which
satisfy condition:
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1) G(z) has bounded L-index in the direction b ∈ Cn \ {0}.
2) for every z = z0+ tb ∈ Bn, where z0 ∈ A, and some t0 ∈ B(z0, t), and r = |t− t0|L(z0+

tb)

max

{
|F (z0 + t′b)| : |t′ − t0| =

2r

L(z0 + tb)

}
≤

≤ max

{
|∂k

bG(z0 + tb)|
k!Lk(z0 + tb)

: 0 ≤ k ≤ Nb(Gα, Lα)

}
.

3) c := sup
z0∈A

max

{
|F (z0+t′b)| : |t′−t0|=

2λb2 (1)

L(z0+t0b)

}
|F (z0+t0b)| < ∞ where t0 is chosen in 2).

If |ε| ≤ 1−α
2c

, then the function H(z) = G(z) + εF (z) has bounded L-index in the direction
b with Nb(H,L) ≤ Nb(Gα, Lα), where Gα(z) = G(z/α), Lα(z) = L(z/α).

Proof. Condition 2) in Theorem 10 always holds for N = Nb(Gα, Lα) instead of N =
Nb(G,L). Indeed by Theorem 9 inequality (14) is satisfied for the function G. Substituting
z0

α
, t

α
and t0

α
instead z0, t and t0 in (14) we obtain

max

{
|G((z0 + tb)/α)| : |t− t0| =

r2α

L((z0 + t0b)/α)

}
≤

≤ P1max

{
|G((z0 + tb)/α)| : |t− t0| =

r1α

L((z0 + t0b)/α)

}
. (29)

By Theorem 9 inequality (29) means that Gα = G(z/α) has bounded Lα-index in the
direction b and vice versa. Then for p ≥ Nb(Gα, Lα) + 1 and α ∈ (1/β, 1)

|∂p
bGα(z)|
p!Lp

α(z)
=

|∂p
bG(z/α)|

p!αpLp(z/α)
≤ max

{
|∂s

bGα(z)|
s!Ls

α(z)
: 0 ≤ s ≤ Nb(Gα, Lα)

}
=

= max

{
|∂s

bG(z/α)|
s!αsLs(z/α)

: 0 ≤ s ≤ Nb(Gα, Lα)

}
.

Multiplying by αp, we deduce

|∂p
bG(z/α)|

p!Lp(z/α)
≤ max

{
αp−s|∂s

bG(z/α)|
s!Ls(z/α)

: 0 ≤ s ≤ Nb(Gα, Lα)

}
≤

≤ αmax

{
|∂s

bG(z/α)|
s!Ls(z/α)

: 0 ≤ s ≤ Nb(Gα, Lα)

}
. (30)

Since z is arbitrary, inequality (30) yields (15).

It is easy to see that Nb(Gα, Lα) ≤ Nb(G,L) for α ∈ (0, 1). Thus, Nb(Gα, Lα) in Theorem
11 can be replaced by Nb(G,L).

Corollary 1. Let l ∈ Q(D), α ∈ (1/β, 1), β > λ(1) and f, g be analytic functions in the
unit disc D, satisfying the conditions:

1) g(z) has bounded l-index;
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2) for every t ∈ C there exists t0 such that f(t0) ̸= 0, |t0 − t| < min{ β
2l(t)

; 1−|t|
2

} and for
r = |t− t0|l(t) one has

max

{
|f(t′)| : |t′ − t0| =

2r

l(t)

}
≤ max

{
|g(k)(t)|
k!lk(t)

: 0 ≤ k ≤ N(gα, lα)

}
.

3) for all t0 chosen in condition 2) one has max
{
|f(t′)| : |t′ − t0|= 2λ(1)

l(t0)

}/
|f(t0)| ≤ c <

+∞.

If |ε| ≤ 1−α
2c

, then the function h(z) = g(z) + εf(z) is of bounded l-index with N(h, l) ≤
N(gα, lα), where gα(z) = g(z/α), lα(z) = l(z/α).

Theorems 10 and 11 are new even for n = 1, i.e. for analytic functions in the unit disc.

5. L-index in direction in a domain compactly embedded in the unit ball. Let D
be an arbitrary bounded domain in Bn such that dist(D, ∂Bn) > 0. If inequality (3) holds
for all z ∈ D instead of ∂Bn, then the analytic function F : ∂Bn → C is called a function of
bounded L-index in the direction b in the domain D. The least such integer m0 is called the
L-index in the direction b ∈ Cn \ {0} in domain D and is denoted by Nb(F,L,D) = m0.
The notation D stands for a closure of the domain D.

Lemma 2. Let D be an arbitrary bounded domain in Bn such that d = dist(D, ∂Bn) =
infz∈D(1 − |z|) > 0, β > 1, b ∈ Cn \ {0} be an arbitrary direction. If L : Bn → R+ is
continuous function such that L(z) ≥ β|b|

d
, and F : Bn → C is analytic function such that

(∀z0 ∈ D) : F (z0 + tb) ̸≡ 0, then Nb(F,L,D) < ∞.

Proof. For every fixed z0 ∈ D we expand the analytic function F (z0 + tb) in a power series
by powers of t in the disc

{
t ∈ C : |t| ≤ 1

L(z0)

}
F (z0 + tb) =

∞∑
m=0

∂m
b F (z0)

m!
tm. (31)

The quantity |∂m
b F (z0)|
m!

is the modulus of a coefficient of the power series (31) at the point
t ∈ C such that |t| = 1

L(z0)
. Since F (z) is function, for every z0 ∈ D

|∂m
b F (z0)|

m!Lm(z0)
→ 0 (m → ∞),

i.e., there exists m0 = m(z0,b) such that inequality (3) holds at the point z = z0 for all
m ∈ Z+.

We prove that sup{m0 : z
0 ∈ D} < +∞. On the contrary we assume that the set of all

values m0 is unbounded in z0, i.e., sup{m0 : z
0 ∈ D} = +∞. Hence, for every m ∈ Z+ there

exists z(m) ∈ D and pm > m

1

pm!Lpm(z(m))

∣∣∣∣∂pmF (z(m))

∂bpm

∣∣∣∣ > max

{
1

k!Lk(z(m))

∣∣∣∣∂kF (z(m))

∂bk

∣∣∣∣ : 0 ≤ k ≤ m

}
. (32)

Since {z(m)} ⊂ D, there exists a subsequence z
′(m) → z′ ∈ G as m → +∞. By Cauchy’s

integral formula
∂p
bF (z)

p!
=

1

2πi

∫
|t|=r

F (z + tb)

tp+1
dt
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for any p ∈ N, z ∈ D. Rewrite (32) as following

max

{
1

k!Lk(z(m))

∣∣∣∣∂kF (z(m))

∂bk

∣∣∣∣ : 0 ≤ k ≤ m

}
<

<
1

Lpm(z(m))

∫
|t|=r/L(z(m))

|F (z(m) + tb)|
|t|pm+1

|dt| ≤ 1

rpm
max{|F (z)| : z ∈ Dr}, (33)

where Dr =
∪

z∗∈D{z ∈ Cn : |z − z∗| ≤ |b|r
L(z∗)

}. We can choose r ∈ (1, β), because F is a
function analytic in the unit ball. Evaluating the limit for every directional derivative of
fixed order in (33) as m → ∞ we obtain

(∀k ∈ Z+) :
1

k!Lk(z′)

∣∣∣∣∂kF (z′)

∂bk

∣∣∣∣ ≤ lim
m→∞

1

rpm
max{|F (z)| : z ∈ Dr} ≤ 0.

Thus, all derivatives in the direction b of the function F at the point z′ equals 0 and
F (z′) = 0. In view of (31) F (z′ + tb) ≡ 0. It is a contradiction.

6. Existence theorem. We consider the function F (z0 + tb) where z0 ∈ Bn is fixed. If
F (z0 + tb) ̸≡ 0, then we denote by pb(z

0 + a0kb) the multiplicity of the zero a0k of the
function F (z0 + tb). If F (z0 + tb) ≡ 0 for some z0 ∈ Bn, then we put pb(z0 + tb) = −1.

Theorem 12. In order that for an analytic function F : Bn → C there exist a positive
continuous function L : Bn → R+ such that F (z) is a function of bounded L-index in the
direction b it is necessary and sufficient that ∃p ∈ Z+ ∀z0 ∈ Bn ∀k pb(z

0 + a0kb) ≤ p.

Proof. Our proof is based on the proof for entire functions from [13] and for analytic functions
in the unit ball of bounded L-index in joint variables from [10].
Necessity. To simplify the notation we consider everywhere in the proof p0k ≡ pb(z

0 + ak0b).
Necessity follows from the definition of analytic function of bounded L-index in direction.
Indeed, assume on the contrary that ∀p ∈ Z+ ∃z0 ∃k p0k > p. This means that

∂
p0k
b F (z0 + a0kb) ̸= 0 and ∂j

bF (z0 + a0kb) = 0

for all j ∈ {1, . . . , p0k − 1}. Therefore L-index in the direction b at the point z0 + a0kb is not
less than p0k > p

Nb(F,L, z
0 + a0kb) > p.

If p → +∞, then we obtain that Nb(F,L, z
0 + a0kb) → +∞. But this contradicts the

boundedness of L-index in the direction of the function F.
Sufficiency. If for some z0 ∈ Bn, F (z0 + tb) ≡ 0, then inequality (3) is obvious.
Let p be the smallest integer such that ∀z0 ∈ Bn F (z0 + tb) ̸≡ 0, and ∀k pk(z

0) ≤ p.
For any point z ∈ Bn we define unambiguously the choice of z0 ∈ Cn and t0 ∈ C such
that z = z0 + t0b. We choose a point z0 ∈ Bn on the hyperplane ⟨z,b⟩ = 0, i.e. the point
z0 is a projection of point z on the hyperplane. Therefore, there exists t0 ∈ Dz0 such that
z = z0 + tb. Let R ∈ (0, 1−|z0|

|b| ). We define r0 = 1
2
min{1 − R,R}. We put KR = {t ∈

C : R− r0 ≤ |t| ≤ R + r0} for all R ∈ (0, 1−|z0|
|b| ) and

m1(z
0, R) = min

a0k∈KR

max
0≤s≤p

{
|∂s

bF (z0 + a0kb)|
s!

}
,
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where a0k are zeros of the function F (z0 + tb).
Since F is analytic, there exists ε = ε(z0, R) > 0 such that

|∂s0
b F (z0 + tb)|

s0!
≥ m1(z

0, R)

2

for some s0 = s(a0k) ∈ {0, . . . , p} and for all t ∈ KR ∩ {t ∈ C : |t − a0k| < ε(R, z0)} and for
all k. We denote G0

ε =
∪

a0k∈KR
{t ∈ C : |t − a0k| < ε}, m2(z

0, R) = min{|F (z0 + tb)| : |t| ≤
R + r0, t /∈ G0

ε},

Q(R, z0) = min

{
m1(R, z0)

2
,m2(R, z0), 1

}
.

We take R = |t0|. Then at least one of the numbers |F (z0 + t0b)|, |∂bF (z0 + t0b)| , . . . ,
1
p!
|∂p

bF (z0 + t0b)| is not less than Q(R, z0) (respectively, 1
s0!

∣∣∣∂s0
b F (z0+ t0)b)

∣∣∣ for t0 ∈ G0
ε and

|F (z0 + t0b)| for t /∈ Gε). Hence

max

{
1

j!

∣∣∂j
bF (z0 + t0b)

∣∣ : 0 ≤ j ≤ p

}
≥ Q(R, z0). (34)

On the other hand, for |t0| = R and j ≥ p+ 1 Cauchy’s inequality is valid

1

j!

∣∣∂j
bF (z0 + t0b)

∣∣ =
∣∣∣∣∣∣∣
1

2πi

∫
|τ−t0|=r0

F (z0 + τb)

(τ − t0)j+1
dτ

∣∣∣∣∣∣∣ ≤
1

rj0
max{|F (z0 + τb)| : |τ | ≤ R + r0}.

(35)
We choose a positive continuous function L(z) such that

L(z0 + t0b) ≥ max

{
max{1,max{|F (z0 + tb)| : |τ | ≤ R + r0}}

Q(R, z0)r20
,

β

1− |z0 + t0b|

}
> 1.

From (34) and (35) with |t0| = R and j ≥ 2 · p we obtain

1
j!Lj(z0+t0b)

·
∣∣∂j

bF (z0 + t0b)
∣∣

max
{

1
k!Lk(z0+t0b)

∣∣∂k
bF (z0 + t0b)

∣∣ : 0 ≤ k ≤ p
} ≤ L−j(z0 + t0b)

rj0Q(R, z0)L−p(z0 + t0b)
×

×
(
max{1,max{|F (z0 + t0b)| : |τ | ≤ R + r0}}

Q(R, z0)r2

)j/2

≤ Lp−j/2(z0 + t0b) ≤ 1.

Since z = z0 + tb, we have∣∣∂j
bF (z)

∣∣
j!Lj(z)

≤ max

{∣∣∂k
bF (z)

∣∣
k!Lk(z)

: 0 ≤ k ≤ p

}
.

In view of arbitrariness of z, the function F has bounded L-index in the direction b.
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