M. M. Sheremeta, A. O. Kuryliak

ON THE GROWTH OF LAPLACE-STIELTJES INTEGRALS

In the paper it is investigated the growth of characteristics of Laplace-Stieltjes integrals $I(\sigma) = \int_0^\infty f(x) dF(x)$, where F is a nonnegative nondecreasing unbounded function continuous on the right on $[0, +\infty)$ and f is a nonnegative on $[0, +\infty)$ function such that there exist $a \geq 0$, $b \geq 0$ and $h > 0$: $\int_{x-a}^{x+b} f(t) dF(t) \geq hf(x)$ for all $x \geq a$. Assume that α, β are positive continuously differentiable functions increasing to $+\infty$ on $[0, +\infty)$ such that:

a) $\alpha(cx) = (1 + o(1))\alpha(x)$ ($x \to +\infty$) for any $c > 0$; b) $\beta(x(1 + o(1))) = (1 + o(1))\beta(x)$ ($x \to +\infty$); c) $\frac{d\beta^{-1}(\alpha(x)/o)}{\ln x} = O(1)$ ($x \to +\infty$) for every $o \in (0, +\infty)$. The main results of the paper are contained in Theorems 5 and 7 and are derived from the following two statements of independent interest. If F satisfies condition $\lim F(x) = o\left(\frac{x\beta^{-1}(\alpha(x))}{o}\right)$ ($x \to +\infty$), then $\varrho_{\alpha\beta}(I) = k_{\alpha\beta}(f)$ (Theorem 1). If in additional the function $v(x) = - (\ln f(x))'$ is continuous and increasing on $[x_0, +\infty)$ and $\varrho_{\alpha\beta}(I) < +\infty$, then $\lambda_{\alpha\beta}(I) = \kappa_{\alpha\beta}(f)$ (Theorem 2), where

$$\lim_{\sigma \to +\infty} \frac{\alpha(\ln I(\sigma))}{\beta(\sigma)} := \left\{ \begin{array}{ll} \varrho_{\alpha\beta}(I), & \lambda_{\alpha\beta}(I), \\ \frac{1}{x} \ln \frac{1}{f(x)} & \kappa_{\alpha\beta}(f). \end{array} \right.$$

Similar results are proved also for so called the modified generalized order and lower order.

1. Introduction. For an entire function $f(z) = \sum_{n=0}^\infty a_n z^n$ let $\varrho(f)$ be its order and $\sigma(f)$ be its type. Using Hadamard’s formulas for the finding of these characteristics, E.G. Calys ([1]) proved the following theorems.

Theorem A. Suppose that entire functions $f_1(z) = \sum_{n=0}^\infty a_{n,1} z^n$ and $f_2(z) = \sum_{n=0}^\infty a_{n,2} z^n$ have finite orders and regular growth (in sense of the equality of order $\varrho(f)$ and lower order $\varrho(f)$) and the sequences $|a_{n,1}/a_{n+1,1}|$ and $|a_{n,2}/a_{n+1,2}|$ are non-decreasing for $n \geq n_0$. If

$$\ln \left(1/|a_n|\right) = (1 + o(1)) \sqrt{\ln \left(1/|a_{n,1}|\right) \ln \left(1/|a_{n,2}|\right)}, \quad n \to \infty,$$

then the function f has regular growth and $\varrho(f) = \sqrt{\varrho(f_1)\varrho(f_2)}$.

2010 Mathematics Subject Classification: 30B50, 30D10, 30D15.
Keywords: Laplace–Stieltjes integral; regular growth; asymptotic estimate.
doi:10.15330/ms.50.1.22-35
Theorem B. Suppose that functions f_1 and f_2 from Theorem A have the same order \(\varrho[f_1] = \varrho[f_2] = \varrho \in (0, +\infty) \) and types \(\sigma[f_1] = \sigma_1, \sigma[f_2] = \sigma_2 \). Also suppose that \(a_{n,1} \neq 0 \) and \(|a_{n,2}| \geq |a_{n,1}|/(l(1/|a_{n,1}|)) \) for all \(n \geq n_0 \), where \(l \) is a slowly varying function. If

\[
|a_n| = (1 + o(1))\sqrt{|a_{n,1}||a_{n,2}|}, \quad n \to \infty,
\]

then the function \(f \) has order \(\varrho[f] = \varrho \) and type \(\sigma[f] \leq \sqrt{\sigma_1\sigma_2} \).

We remark that R.S.L. Srivastava ([2,3]) tried to prove Theorem A without assumptions \(a_{n,1} \neq 0 \) and \(|a_{n,2}| \geq |a_{n,1}|/(l(1/|a_{n,1}|)) \) for all \(n \geq n_0 \) and Theorem B without condition of the nondecrease of the sequences \((|a_{n,1}/a_{n+1,1}|) \) and \((|a_{n,2}/a_{n+1,2}|) \). On the fallaciousness of such statements it was indicated in Math. Rev., 1963, V.25, N2204, N2206.

In [4] Theorems A and B are transferred on entire Dirichlet series. Here we will obtain such theorems for Laplace-Stieltjes integrals.

Let \(V \) be the class of which are nonnegative nondecreasing unbounded and continuous on the right functions \(F \) on \([0, +\infty) \).

The Laplace–Stieltjes transform of a real-valued function \(g \) is given, usually, by a Lebesgue–Stieltjes integral of the form \(\int_0^{+\infty} e^{-x} dg(x) \). We write this transformation in a different form. For a nonnegative function \(f \) on \([0, +\infty) \) the integral

\[
I(\sigma) = \int_0^{+\infty} f(x)e^{x\sigma}dF(x), \quad \sigma \in \mathbb{R},
\]

is called of Laplace-Stieltjes ([5–7]). Integral (1) is a direct generalization of the ordinary Laplace integral \(I(\sigma) = \int_0^{+\infty} f(x)e^{x\sigma}dx \) and of the Dirichlet series \(D(\sigma) = \sum_{n=0}^{+\infty} a_n e^{\lambda_n\sigma} \) with nonnegative coefficients \(a_n \) and exponents \(\lambda_n, 0 \leq \lambda_n \uparrow +\infty (n \to \infty) \), if we choose \(F(x) = n(x) = \sum_{\lambda_n \leq x} 1 \) and \(f(\lambda_n) = a_n \geq 0 \) for all \(n \geq 0 \) (see also [5,8]).

Let

\[
\mu(\sigma) = \mu(\sigma, I) = \max\{f(x)e^{x\sigma} : x \geq 0\}, \quad \sigma \in \mathbb{R},
\]

be the maximum of the integrand, \(\sigma_c \) be the abscissa of convergence of the integral (1) and \(\sigma_\mu \) be the abscissa of maximum of the integrand. Then ([7, p.8])

\[
\sigma_\mu = \lim_{x \to +\infty} \frac{1}{x} \ln \frac{1}{f(x)}
\]

and if either \(\ln F(x) = o(x) \) or \(\ln F(x) = o(\ln f(x)) \) as \(x \to +\infty \) then ([7, p.13]) \(\sigma_c \leq \sigma_\mu \). Also we remark that if \(\ln F(x) = O(x) \) as \(x \to +\infty \) and \(\sigma_\mu = +\infty \) then ([7, p.11]) \(\sigma_c = +\infty \).

To obtain the inequality \(\sigma_c \geq \sigma_\mu \) we introduce as in [7, p.21] the concept of a regular variation of \(f \) in regard to \(F \). We say that a positive function \(f \) has regular variation in regard to \(F \) if there exist \(a \geq 0, b \geq 0 \) and \(h > 0 \) such that for all \(x \geq a \)

\[
\int_{x-a}^{x+b} f(t)dF(t) \geq hf(x).
\]

Then [7, p.21] if \(F \in V \) and \(f \) has regular variation in regard to \(F \) then \(\sigma_c \leq \sigma_\mu \). Thus, if \(F \in V \) and \(f \) has regular variation in regard to \(F \) and either \(\ln F(x) = o(x) \) or \(\ln F(x) = o(\ln f(x)) \) as \(x \to +\infty \) then \(\sigma_c = \sigma_\mu \).
Further we assume that $\sigma_e = \sigma_\mu = +\infty$.

2. Generalized orders. Let L be the class of continuous increasing functions α such that $\alpha(x) \geq 0$ for $x \geq x_0$, $\alpha(x) = \alpha(x_0)$ for $x \leq x_0$, and on $[x_0, +\infty)$ the function α increases to $+\infty$. We say that $\alpha \in L^0$ if $\alpha \in L$ and $\alpha(x(1+o(1))) = (1+o(1))\alpha(x)$ as $x \to +\infty$; further, $\alpha \in L_{si}$ if $\alpha \in L$ and for any $c > 0$ $\alpha(cx) = (1+o(1))\alpha(x)$ as $x \to +\infty$. It is easy to see that $L_{si} \subset L^0$. Functions from L_{si} are called slowly increasing. In future we will need the next lemma [9].

Lemma 1. Let $\beta \in L$ and

$$B(\delta) = \lim_{x \to +\infty} \frac{\beta((1+\delta)x)}{\beta(x)}, \quad \delta > 0.$$

Then in order that $\beta \in L^0$ it is necessary and sufficient that $B(\delta) \to 1$ as $\delta \to 0$.

Let $\alpha \in L$, $\beta \in L$, and G be an arbitrary function on $[\sigma_0, +\infty)$. The value

$$\varrho_{\alpha\beta}(G) = \lim_{\sigma \to +\infty} \frac{\alpha(G(\sigma))}{\beta(\sigma)}$$

is called a generalized order of G. If we choose $G(\sigma) = \ln I(\sigma)$ then from (2) we obtain the definition of the generalized order $\varrho_{\alpha\beta}(I)$ of the Laplace-Stieltjes integral (1). Also define

$$k_{\alpha\beta}(f) = \lim_{x \to +\infty} \frac{\alpha(x)}{\beta \left(\frac{1}{x} \ln \frac{1}{f(x)} \right)}.$$

First we remark that if the functions $\alpha \in L^0$ and $\beta \in L^0$ are continuously differentiable and for every $\varrho \in (0, +\infty)$

$$\frac{d\beta^{-1}(\alpha(x)/\varrho)}{d\ln x} = O(1), \quad x \to +\infty,$$

then ([7, p.77]) $\varrho_{\alpha\beta}(\ln \mu) = k_{\alpha\beta}(f)$, and if for every $\varrho \in (0, +\infty)$

$$\ln F(x) = o \left(x\beta^{-1} \left(\frac{\alpha(x)}{\varrho} \right) \right), \quad x \to +\infty,$$

then ([7, p. 77]) $\varrho_{\alpha\beta}(I) \leq \varrho_{\alpha\beta}(\ln \mu)$. On the other hand, if f has a regular variation in regard to F then ([7, p.81]) $\varrho_{\alpha\beta}(I) \geq \varrho_{\alpha\beta}(\ln \mu)$ for each $\alpha \in L^0$ and $\beta \in L$.

Thus, the following theorem is true.

Theorem 1. Let $F \in V$, f have regular variation in regard to F and functions $\alpha \in L_{si}$ and $\beta \in L^0$ satisfy condition (3). If F satisfies condition (4) then $\varrho_{\alpha\beta}(I) = k_{\alpha\beta}(f)$.

Now we put

$$\lambda_{\alpha\beta}(I) = \lim_{\sigma \to +\infty} \frac{\alpha(\ln I(\sigma))}{\beta(\sigma)}, \quad \lambda_{\alpha\beta}(\ln \mu) = \lim_{\sigma \to +\infty} \frac{\alpha(\ln \mu(\sigma))}{\beta(\sigma)}, \quad \kappa_{\alpha\beta}(f) = \lim_{x \to +\infty} \frac{\alpha(x)}{\beta \left(\frac{1}{x} \ln \frac{1}{f(x)} \right)}.$$

Proposition 1. If $\alpha \in L$ and $\beta \in L^0$ then $\lambda_{\alpha\beta}(\ln \mu) \geq \kappa_{\alpha\beta}(f)$.
Indeed, if \(\varkappa_{\alpha\beta}(f) > 0 \) then for each \(\varkappa \in (0, \varkappa_{\alpha\beta}(f)) \) and all \(x \geq x_0 = x_0(\varkappa) \) we have
\[
\ln f(x) \geq -x\beta^{-1}(\alpha(x)/\varkappa). \]
Therefore, \(\ln \mu(\sigma) \geq -x\beta^{-1}(\alpha(x)/\varkappa) + x\sigma \) for all \(\sigma \) and \(x \geq x_0 \).

Choosing \(x = \alpha^{-1}(\varkappa\beta(\sigma - 1)) \geq x_0 \) for \(\sigma \geq \sigma_0 \) hence we obtain
\[
\ln \mu(\sigma) \geq a^{-1}(\varkappa\beta(\sigma - 1)) = a^{-1}(\varkappa(1 + o(1))\beta(\sigma)), \quad \sigma \to +\infty.
\]

Therefore, \(\lambda_{\alpha\beta}(\ln \mu) \geq \varkappa \) and in view of the arbitrariness of \(\varkappa \) we have \(\lambda_{\alpha\beta}(\ln \mu) \geq \varkappa_{\alpha\beta}(f) \).

If \(\varkappa_{\alpha\beta}(f) = 0 \) this inequality is obvious.

Proposition 2. Let \(\alpha \in L_{si}, \beta \in L^0 \) and condition (3) hold. If the function \(v(x) = -(\ln f(x))' \) is continuous and increasing on \([x_0, +\infty) \) then \(\lambda_{\alpha\beta}(\ln \mu) \leq \varkappa_{\alpha\beta}(f) \).

Indeed, since \(v(x) = -(\ln f(x))' \) is continuous and increasing on \([x_0, +\infty) \), the function \(\ln f(x) + x\sigma \) has the unique point \(x \) of the maximum such that \(\sigma = v(x) \), and \(\ln \mu(\sigma) = \ln f(x) + x\sigma, \) where \(\sigma = v(x) \).

Suppose that \(\varkappa_{\alpha\beta}(f) < +\infty \). Then for every \(\varkappa > \varkappa_{\alpha\beta}(f) \) there exists a sequence \((x_k) \uparrow +\infty \) such that \(\ln f(x_k) \leq -x_k\beta^{-1}(\alpha(x_k)/\varkappa) \). We put \(\mu^*(\sigma) = f(x_k)e^{\sigma x_k} \). Since \(\mu^*(\sigma) = f(x)e^{\sigma x} \) for \(\sigma = v^{-1}(x) \) we have \(\mu(\sigma_k) = \mu^*(\sigma_k) \) for \(\sigma_k = v(x_k) \). Hence
\[
\ln \mu(\sigma_k) = \ln \mu^*(\sigma_k) \leq \max_k \{-x_k\beta^{-1}(\alpha(x_k)/\varkappa) + x_k\sigma_k\} \leq \max_x \{-x\beta^{-1}(\alpha(x)/\varkappa) + x\sigma_k\}.
\]

In view of (3)
\[
(-x\beta^{-1}(\alpha(x)/\varkappa)) + x\sigma_k' = -\beta^{-1}(\alpha(x)/\varkappa) - \frac{d\beta^{-1}(\alpha(x)/k)}{d\ln x} + \sigma_k =
\]
\[
-\beta^{-1}(\alpha(x)/\varkappa) + \sigma_k + O(1), \quad x \to +\infty,
\]
i.e. the function \(-x\beta^{-1}(\alpha(x)/\varkappa)) + x\sigma_k\) attains its maximum at the point
\[
x(\sigma_k) = \alpha^{-1}(\varkappa\beta(\sigma_k + O(1))), \quad x \to +\infty,
\]
\[
\ln \mu(\sigma_k) \leq -\alpha^{-1}(\varkappa\beta(\sigma_k + O(1)))(\sigma_k + O(1))) + \sigma_k\alpha^{-1}(\varkappa\beta(\sigma_k + O(1))) =
\]
\[
= O(\alpha^{-1}(\varkappa\beta(\sigma_k + O(1)))), \quad k \to +\infty.
\]

Since \(\alpha \in L_{si} \) and \(\beta \in L^0 \), hence it follows that \(\lambda_{\alpha\beta}(\ln \mu) \leq \varkappa \). In view of the arbitrariness of \(\varkappa \) we have \(\lambda_{\alpha\beta}(\ln \mu) \leq \varkappa_{\alpha\beta}(f) \). If \(\varkappa_{\alpha\beta}(f) = +\infty \) this inequality is obvious.

Proposition 3. If \(\alpha \in L^0, \beta \in L \) and \(f \) has regular variation in regard to \(F \) then \(\lambda_{\alpha\beta}(\ln \mu) \leq \lambda_{\alpha\beta}(I) \).

Indeed, if \(f \) has regular variation in regard to \(F \) then ([7, p.75])
\[
\ln \mu(\sigma) \leq (1 + o(1))\ln I(\sigma), \quad \sigma \to +\infty,
\]
whence \(\lambda_{\alpha\beta}(\ln \mu) \leq \lambda_{\alpha\beta}(I) \).

Proposition 4. Let the functions \(\alpha \in L^0 \) and \(\beta \in L^0 \) satisfy condition (3), and the function \(F \in V \) satisfies condition (4). If \(g_{\alpha\beta}(\ln \mu) < +\infty \) then \(\lambda_{\alpha\beta}(\ln \mu) \geq \lambda_{\alpha\beta}(I) \).
Indeed, since \(g_{\alpha\beta}(\ln \mu) < +\infty \), we have \(k_{\alpha\beta}(f) = g_{\alpha\beta}(\ln \mu) < +\infty \), that is \(\ln f(x) \leq -x^\beta^{-1}(\alpha(x)/k) \) for some \(k < +\infty \) and in view of (4) \(\lim_{x \to +\infty} \frac{\ln f(x)}{\ln(1/f(x))} = 0 \). Therefore, [7, p.61]

\[
I(\sigma) \leq K(\varepsilon)\mu(\sigma/(1 - \varepsilon))^{1 - \varepsilon}
\]

for every \(\varepsilon \in (0, 1) \) and all \(\sigma \geq \sigma_0(\varepsilon) \). Hence,

\[
\lambda_{\alpha\beta}(I) \leq \lambda_{\alpha\beta}(\ln \mu) \lim_{\sigma \to +\infty} \frac{\beta(\sigma/(1 - \varepsilon))}{\beta(\sigma)}.
\]

Since \(\beta \in L^0 \) by Lemma 1 \(\lim_{x \to +\infty} \frac{\beta(\sigma/(1 - \varepsilon))}{\beta(\sigma)} \to 1 \) as \(\varepsilon \to 0 \). Thus, \(\lambda_{\alpha\beta}(I) \leq \lambda_{\alpha\beta}(\ln \mu) \).

Combining Propositions 1–4 we get the following theorem.

Theorem 2. Let functions \(\alpha \in L_{si} \) and \(\beta \in L^0 \) satisfy condition (3) and the function \(F \in V \) satisfy condition (4). Suppose that the function \(f \) has a regular variation in regard to \(F \) and \(v(x) = -(\ln f(x))' \) is continuous and increasing on \([x_0, +\infty)\). If \(g_{\alpha\beta}(I) < +\infty \) then \(\lambda_{\alpha\beta}(I) = \kappa_{\alpha\beta}(f) \).

3. Modified generalized orders.

The values

\[
\ell_{\alpha\beta}^M(I) = \lim_{\sigma \to +\infty} \frac{1}{\beta(\sigma)} \alpha\left(\frac{\ln I(\sigma)}{\sigma}\right), \quad \lambda_{\alpha\beta}^M(I) = \lim_{\sigma \to +\infty} \frac{1}{\beta(\sigma)} \alpha\left(\frac{\ln I(\sigma)}{\sigma}\right)
\]

are called the modified generalized order and the modified lower generalized order of \(I \), respectively. If \(\ln(\mu(\sigma)) \) instead \(I(\sigma) \) then we obtain definitions of \(g_{\alpha\beta}^M(\ln \mu) \) and \(\lambda_{\alpha\beta}^M(\ln \mu) \).

Proposition 5. Let either \(\alpha \in L_{si} \) and \(\beta \in L^0 \) or \(\alpha \in L^0 \) and \(\beta \in L_{si} \), and the function \(F \in V \) satisfies condition (4). Then \(g_{\alpha\beta}^M(\ln \mu) = k_{\alpha\beta}(f) \).

Proof. Suppose that \(g_{\alpha\beta}^M(\ln \mu) < +\infty \). Then for every \(g > g_{\alpha\beta}^M(\ln \mu) \), all \(\sigma \geq \sigma_0(g) \) and \(x \geq 0 \) we obtain \(\ln f(x) + \sigma x \leq \ln \mu(\sigma) \leq \sigma \alpha^{-1}(g(\beta(\sigma))) \), that is \(\ln f(x) \leq \sigma \alpha^{-1}(g(\beta(\sigma))) - \sigma x \).

We choose \(\sigma = \sigma(x) = \beta^{-1}(\alpha(\delta x)/g) \) for an arbitrary \(\delta \in (0, 1) \). Then \(\sigma(x) \geq \sigma_0(g) \) for \(x \geq x_0 = x_0(\delta, \delta) \) and \(\ln f(x) \leq -(1 - \delta)x^\beta^{-1}(\alpha(\delta x)/g) \) for \(x \geq x_0 \), whence

\[
k_{\alpha\beta}(f) = \lim_{x \to +\infty} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to +\infty} \left(\frac{\alpha(\delta x)}{\beta(1/\delta x)} \right) \frac{\beta(1/\delta x)}{\beta(1/\delta x)} \leq 2 \lim_{x \to +\infty} \frac{\beta(x/(1 - \delta))}{\beta(x)} \lim_{x \to +\infty} \frac{\alpha(x)}{\alpha(\delta x)}.
\]

If \(\alpha \in L_{si} \) and \(\beta \in L^0 \) then \(\lim_{x \to +\infty} \frac{\alpha(x)}{\alpha(\delta x)} = 1 \) and by Lemma 1 \(\lim_{x \to +\infty} \frac{\beta(x/(1 - \delta))}{\beta(x)} \to 1 \) as \(\delta \to 0 \).

Hence in view of the arbitrariness of \(g \) we obtain

\[
k_{\alpha\beta}(f) \leq g_{\alpha\beta}^M(\ln \mu).
\]

If \(\beta \in L_{si} \) and \(\alpha \in L^0 \) then \(\lim_{x \to +\infty} \frac{\beta(x/(1 - \delta))}{\beta(x)} = 1 \), and by Lemma 1 \(\lim_{x \to +\infty} \frac{\alpha(x)}{\alpha(\delta x)} \to 1 \) as \(\delta \to 1 \), and we again obtain inequality (9). If \(g_{\alpha\beta}^M(\ln \mu) = +\infty \) inequality (9) is obvious.
Now assume that \(k_{\alpha\beta}(f) \neq g_{\alpha\beta}^M(\ln \mu) \). Then in view of (8) \(k_{\alpha\beta}(f) < g_{\alpha\beta}^M(\ln \mu) \) and if we choose \(k_{\alpha\beta}(f) < \varrho < g_{\alpha\beta}^M(\ln \mu) \) then \(\ln f(x) \leq -x\beta^{-1}(\alpha(x)/\varrho) \) for \(x \geq x_0(\varrho) \), i.e.

\[
\ln \mu(\sigma) \leq \max \left\{ \max_{x \leq x_0(\varrho)} \ln f(x) + x\sigma, \max_{x \geq x_0(\varrho)} (-x\beta^{-1}(\alpha(x)/\varrho) + x\sigma) \right\} \\
\leq \max_{x \geq 0} [x(\sigma - \beta^{-1}(\alpha(x)/\varrho))] + O(\sigma), \quad \sigma \to +\infty.
\]

Since \(\ln \mu(\sigma) \to +\infty \) as \(\sigma \to +\infty \), the function \(x(\sigma - \beta^{-1}(\alpha(x)/\varrho)) \) attains the maximum at the point \(x = x(\sigma) \) such that \(\sigma - \beta^{-1}(\alpha(x)/\varrho) > 0 \), that is \(x(\sigma) \leq \alpha^{-1}(\varrho\beta(\sigma)) \). Therefore,

\[
\ln \mu(\sigma) \leq x(s)(\sigma - \beta^{-1}(\alpha(x(\sigma))/\varrho)) + O(\sigma) \leq \sigma x(\sigma) + O(\sigma) \leq \sigma \alpha^{-1}(\varrho\beta(\sigma)) + O(\sigma), \quad \sigma \to +\infty,
\]

whence it follows that \(g_{\alpha\beta}^M(\ln \mu) \leq \varrho \). It is a contradiction that therefore, Proposition 5 is proved.

Proposition 6. Let \(\alpha \in L^0, \beta \in L^0 \), and \(f \) have regular variation in regard to \(F \). Then \(g_{\alpha\beta}^M(\ln \mu) = g_{\alpha\beta}^M(I) \).

Indeed, if \(f \) has regular variation in regard to \(F \) then from (5) we obtain \(g_{\alpha\beta}^M(\ln \mu) \leq g_{\alpha\beta}^M(I) \). On the other hand, if \(g_{\alpha\beta}^M(\ln \mu) < +\infty \) then in view of Proposition 5, as in the proof of Proposition 4, we have (6) for every \(\varepsilon \in (0, 1) \) and all \(\sigma \geq \sigma_0(\varepsilon) \). Since \(\alpha \in L^0 \) and \(\beta \in L^0 \), we have \(g_{\alpha\beta}^M(I) \leq g_{\alpha\beta}^M(\ln \mu) \). Thus, \(g_{\alpha\beta}^M(\ln \mu) = g_{\alpha\beta}^M(I) \).

Uniting Propositions 5 and 6 we get the following theorem.

Theorem 3. Let either \(\alpha \in L_{si} \) and \(\beta \in L^0 \) or \(\alpha \in L^0 \) and \(\beta \in L_{si} \), the function \(F \in V \) satisfies condition (4) and \(f \) has regular variation in regard to \(F \). Then \(g_{\alpha\beta}^M(I) = k_{\alpha\beta}(f) \).

Proposition 7. Let either \(\alpha \in L_{si} \) and \(\beta \in L^0 \) or \(\alpha \in L^0 \) and \(\beta \in L_{si} \). Then \(\lambda_{\alpha\beta}^M(\ln \mu) \geq \kappa_{\alpha\beta}(f) \). Moreover, if \(v(x) = -(\ln f(x))' \) is continuous and increasing on \([x_0, +\infty) \) then \(\lambda_{\alpha\beta}^M(\ln \mu) = \kappa_{\alpha\beta}(f) \).

Indeed, if \(\kappa_{\alpha\beta}(f) > 0 \) then for each \(\kappa \in (0, \kappa_{\alpha\beta}(f)) \) and all \(x \geq x_0 = x_0(\kappa) \) as in the proof of Proposition 7 we obtain \(\ln \mu(\sigma) \geq -x\beta^{-1}(\alpha(x)/\kappa) + x\sigma \) for all \(\sigma \) and \(x \geq x_0 \). Choosing \(x = \alpha^{-1}(\kappa\beta(\delta\sigma)) \), where \(0 < \delta < 1 \), we have \(\ln \mu(\sigma) \geq (1 - \delta)\sigma a^{-1}(\kappa\beta(\delta\sigma)) \). Hence

\[
\lambda_{\alpha\beta}^M(\ln \mu) \geq \lim_{\sigma \to +\infty} \frac{\alpha((1 - \delta)a^{-1}(\kappa\beta(\delta\sigma)))}{\beta(\sigma)}
\]

If \(\alpha \in L_{si} \) and \(\beta \in L^0 \) hence we have as above \(\lambda_{\alpha\beta}^M(\ln \mu) \geq \kappa \lim_{\sigma \to +\infty} \frac{\beta(\delta\sigma)}{\beta(\sigma)} \to \kappa \) as \(\delta \to 1 \). If \(\alpha \in L^0 \) and \(\beta \in L_{si} \) then

\[
\lambda_{\alpha\beta}^M(\ln \mu) \geq \kappa \lim_{\sigma \to +\infty} \frac{\alpha((1 - \delta)a^{-1}(\kappa\beta(\delta\sigma)))}{\kappa\beta(\delta\sigma)} \frac{(\delta\sigma)^{\beta(\delta\sigma)}}{\beta(\sigma)} = \kappa \lim_{t \to +\infty} \frac{\alpha((1 - \delta)a^{-1}(t))}{t} \to \kappa
\]

as \(\delta \to 0 \). Therefore, \(\lambda_{\alpha\beta}^M(\ln \mu) \geq \kappa_{\alpha\beta}(f) \).

On the other hand, as in the proof Proposition 2 we obtain \(\ln \mu(\sigma) = \ln f(x) + \sigma x \) for \(\sigma = v(x) \). Supposing that \(\kappa_{\alpha\beta}(f) < +\infty \), for \(\kappa > \kappa_{\alpha\beta}(f) \) and some sequence \((x_k) \uparrow +\infty \) as in the proof of Proposition 2 we obtain for \(\sigma_k = v(x_k) \)

\[
\ln \mu(\sigma_k) \leq \max_x \{-x\beta^{-1}(\alpha(x)/\kappa) + x\sigma_k\} = \max_x \{-x(\sigma_k - \beta^{-1}(\alpha(x)/\kappa))\}
\]
Hence, as in the proof of Proposition 5, it follows that
\[\ln \mu(\sigma_k) \leq \sigma_k \alpha^{-1}(\theta \beta(\sigma_k)) + O(\sigma_k), \quad k \to \infty, \]
whence it follows that \(\lambda_{\alpha \beta}^M(\ln \mu) \leq \kappa. \) In view of the arbitrariness of \(\kappa \) Proposition 7 is proved.

Proposition 8. Let \(\alpha \in L^0, \beta \in L^0, \varrho_{\alpha \beta}^M(\ln \mu) < +\infty \), the function \(F \in V \) satisfies condition (4) and \(f \) has regular variation in regard to \(F \). Then \(\lambda_{\alpha \beta}^M(\ln \mu) = \lambda_{\alpha \beta}^M(I). \)

Indeed, since \(f \) has regular variation in regard to \(F \), from (5) we obtain \(\lambda_{\alpha \beta}^M(\ln \mu) \leq \lambda_{\alpha \beta}^M(I). \) On the other hand, since \(\varrho_{\alpha \beta}^M(\ln \mu) < +\infty \), we have (6) for every \(\varepsilon \in (0, 1) \) and all \(\sigma \geq \sigma_0(\varepsilon) \). Since \(\alpha \in L^0 \) and \(\beta \in L^0 \), hence \(\lambda_{\alpha \beta}^M(I) \leq \lambda_{\alpha \beta}^M(\ln \mu) \). Thus, \(\lambda_{\alpha \beta}^M(\ln \mu) = \lambda_{\alpha \beta}^M(I) \).

From Propositions 7 and 8 we obtain the following theorem.

Theorem 4. Let \(\alpha \in L_{si} \) and \(\beta \in L^0 \) or \(\alpha \in L^0 \) and \(\beta \in L_{si} \) and the function \(F \in V \) satisfies condition (4). Suppose that \(f \) has regular variation in regard to \(F \) and \(v(x) = -(\ln f(x))^\prime \) is continuous and increasing on \([x_0, \infty) \). Then \(\lambda_{\alpha \beta}^M(I) = \kappa_{\alpha \beta}(f) \).

4. Analogues of Theorem A. Let \(LS(F) \) be the class of Laplace-Stieltjes integrals for which \(\sigma_c = \sigma_\mu = +\infty \). Suppose that \(I_j \in LS(F), 1 \leq j \leq m, \) and
\[I_j(\sigma) = \int_{0}^{\infty} f_j(x)e^{\sigma x} dF(x), \quad \sigma \in \mathbb{R}. \] (10)

The following theorem is an analogue of Theorem A.

Theorem 5. Let functions \(\alpha \in L_{si} \) and \(\beta \in L^0 \) satisfy condition (3) and the function \(F \in V \) satisfy condition (4). Suppose that all functions \(f_j \) have regular variation in regard to \(F \) and \(v_j(x) = -(\ln f_j(x))^\prime \) is continuous and increasing on \([x_0, \infty) \). Also suppose that \(f \) have regular variation in regard to \(F \) and
\[\beta \left(\frac{1}{x} \ln \frac{1}{f(x)} \right) = (1 + o(1)) \prod_{j=1}^{m} \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right)^{\omega_j}, \quad x \to +\infty, \] (11)
where \(\omega_j > 0 \) for \(1 \leq j \leq m \) and \(\sum_{1 \leq j \leq m} \omega_j = 1 \).

If all integrals (10) have regular \(\alpha \beta \)-growth (i.e. \(\lambda_{\alpha \beta}(I_j) = \varrho_{\alpha \beta}(I_j) < +\infty \)) then integral (1) has regular \(\alpha \beta \)-growth and \(\varrho_{\alpha \beta}(I) = \prod_{j=1}^{m} \varrho_{\alpha \beta}(I_j)^{\omega_j}. \)

Proof. By Theorem 1 \(\varrho_{\alpha \beta}(I_j) = k_{\alpha \beta}(f_j) \) and by Theorem 2 \(\lambda_{\alpha \beta}(I_j) = \kappa_{\alpha \beta}(f_j) \). Since \(\lambda_{\alpha \beta}(I_j) = \varrho_{\alpha \beta}(I_j) = q_j < 1 \), we have \(k_{\alpha \beta}(f_j) = \kappa_{\alpha \beta}(f_j) = q_j \), that is
\[\lim_{x \to +\infty} \frac{1}{x} \ln \frac{1}{f_j(x)} = q_j. \] (12)

Therefore, from (11) we obtain
\[\lim_{x \to +\infty} \frac{1}{x} \ln \frac{1}{f(x)} = \lim_{x \to +\infty} \frac{1}{x} \ln \frac{1}{f_j(x)} \prod_{j=1}^{m} \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right)^{\omega_j} = \]
ON THE GROWTH OF LAPLACE-STIELTJES INTEGRALS

\[= \lim_{x \to +\infty} \prod_{j=1}^{m} \left(\frac{1}{\alpha(x)} \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \right)^{\omega_j} = \prod_{j=1}^{m} \lim_{x \to +\infty} \left(\frac{1}{\alpha(x)} \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \right)^{\omega_j} = \prod_{j=1}^{m} \left(\frac{1}{g_j} \right)^{\omega_j}, \]

i.e.

\[\prod_{j=1}^{m} g_j^{\omega_j} = \lim_{x \to +\infty} \frac{\alpha(x)}{\beta \left(\frac{1}{x} \ln \frac{1}{f(x)} \right)} = k_{\alpha \beta}(f) = \varphi_{\alpha \beta}(f). \] (13)

By Propositions 2 and 1 \(\lambda_{\alpha \beta}(\ln I) \geq \lambda_{\alpha \beta}(\ln \mu) \geq \varphi_{\alpha \beta}(f) \) and by Theorem 1 \(g_{\alpha \beta}(\ln I) = k_{\alpha \beta}(f) \). Therefore, \(g_{\alpha \beta}(I) = \lambda_{\alpha \beta}(I) = \prod_{j=1}^{m} (r_{\alpha \beta}(I_j))^{\omega_j} \).

If we choose \(\alpha(x) = \ln x \) and \(\beta(x) = x \) for \(x \geq x_0 \) then from the definitions of \(g_{\alpha \beta}(I) \) and \(\lambda_{\alpha \beta}(I) \) we obtain the definitions of the R-order \(g_R \) and lower R-order \(\lambda_R \), respectively. Choosing some more \(m = 2 \) and \(\omega_1 = \omega_2 = 1/2 \), we get the following statement.

Corollary 1. Let \(F \in V \) and \(\ln F(x) = o(x \ln x) \) as \(x \to +\infty \). Suppose that the functions \(f_j, j = 1, 2, \) have regular variation in regard to \(F \) and \(v_j(x) = - (\ln f_j(x))^t \) is continuous and increasing on \([x_0, +\infty) \). Also suppose that \(f \) have regular variation in regard to \(F \) and

\[\ln \frac{1}{f(x)} = (1 + o(1)) \sqrt{\ln \frac{1}{f_1(x)} \ln \frac{1}{f_2(x)}}, \quad x \to +\infty. \]

If integrals \(I_1 \) and \(I_2 \) have regular R-growth (i.e. \(\lambda_R(I_j) = g_R(I_j) < +\infty \) for \(j = 1, 2 \)) then integral (1) has regular R-growth and \(g_R(I) = \sqrt{g_R(I_1)g_R(I_2)}. \)

Using modified generalized orders we get the following theorem.

Theorem 6. Let either \(\alpha \in L_{s_1} \) and \(\beta \in L^0 \) or \(\alpha \in L^0 \) and \(\beta \in L_{s_2} \), and the function \(F \in V \) satisfy condition (4). Suppose that \(f \) has regular variation in regard to \(F \) and \(v(x) = - (\ln f(x))^t \) is continuous and increasing on \([x_0, +\infty) \). Also suppose that \(f \) have regular variation in regard to \(F \) and (11) holds.

If all integrals (10) have regular modified \(\alpha \beta \)-growth (i.e. \(\lambda_{\alpha \beta}^{M}(I_j) = g_{\alpha \beta}^{M}(I_j) < +\infty \)) then integral (1) has regular modified \(\alpha \beta \)-growth and \(g_{\alpha \beta}^{M}(I) = \prod_{j=1}^{m} (g_{\alpha \beta}^{M}(I_j))^{\omega_j}. \)

Proof. By Theorem 3 \(g_{\alpha \beta}^{M}(I_j) = k_{\alpha \beta}(f_j) \) and by Theorem 4 \(\lambda_{\alpha \beta}^{M}(I_j) = \varphi_{\alpha \beta}(f_j) \).

Since \(\lambda_{\alpha \beta}^{M}(I_j) = g_{\alpha \beta}^{M}(I_j) = \varphi_{\alpha \beta}(f_j) = g_j \), that is (12) holds. Therefore, as in the proof of Theorem 5 we obtain (13) from (11). By Propositions 7 and 6 \(\lambda_{\alpha \beta}(\ln \mu) \geq \lambda_{\alpha \beta}(\ln I) \geq \lambda_{\alpha \beta}(\ln \mu) \geq \varphi_{\alpha \beta}(f) \) and by Theorem 3 \(g_{\alpha \beta}^{M}(\ln I) = k_{\alpha \beta}(f) \). Therefore, \(g_{\alpha \beta}^{M}(I) = \lambda_{\alpha \beta}(I) = \prod_{j=1}^{m} (g_{\alpha \beta}^{M}(I_j))^{\omega_j}. \)

If we choose \(\alpha(x) = \ln x \) and \(\beta(x) = \ln x \) for \(x \geq x_0 \) then from the definitions of \(g_{\alpha \beta}(I) \) and \(\lambda_{\alpha \beta}(I) \) we obtain the definitions of the logarithmic order \(g_l \) and lower logarithmic order \(\lambda_l \), respectively. Since

\[\frac{1}{\ln \sigma} \ln \left(\frac{\ln I(\sigma)}{\sigma} \right) = \frac{\ln \ln I(\sigma)}{\ln \sigma} - 1, \]

for such function we have \(g_{\alpha \beta}^{M}(I) = g_l(I) \) and \(\lambda_{\alpha \beta}^{M}(I) = \lambda_l(I) \). Therefore, choosing \(m = 2 \) and \(\omega_1 = \omega_2 = 1/2 \), we get the following statement.
Corollary 2. Let $F \in V$ and $\ln F(x) = o(x)$ as $x \to +\infty$. Suppose that the functions f_j, $j = 1, 2$, have regular variation in regard to F and $v_j(x) = -\ln f_j(x)'$ is continuous and increasing on $[x_0, +\infty)$. Also suppose that f has regular variation in regard to F and

$$
\ln \left(\frac{1}{x} \ln f(x) \right) = (1 + o(1)) \sqrt{\ln \left(\frac{1}{x} \ln f_1(x) \right) \ln \left(\frac{1}{x} \ln f_2(x) \right)}, \quad x \to +\infty.
$$

(14)

If integrals I_1 and I_2 have regular logarithmic growth (i.e. $\lambda(I_j) = \varrho(I_j) \in (1, +\infty)$ for $j = 1, 2$) then integral (1) has regular logarithmic growth and $\varrho(I) = \sqrt{\varrho(I_1) - 1}(\varrho(I_1) - 1).

Finally, if we choose $\alpha(x) = x$ and $\beta(x) = \ln x$ for $x \geq x_0$ then $\varrho(I) = T(I) := \lim_{\sigma \to +\infty} \frac{\ln \varrho(\sigma)}{\sigma}$ and $\lambda(I) = t(I) := \lim_{\sigma \to +\infty} \frac{\ln \lambda(\sigma)}{\sigma}$, and we obtain the next corollary.

Corollary 3. Let $F \in V$ and $\ln F(x) = o(x^2)$ as $x \to +\infty$. Suppose that the functions f_j, $j = 1, 2$, have regular variation in regard to F and $v_j(x) = -\ln f_j(x)'$ is continuous and increasing on $[x_0, +\infty)$. Also suppose that f has regular variation in regard to F and (14) holds. If $t(I_j) = T(I_j) < +\infty$ for $j = 1, 2$ then for integral (1) $t(I) = T(I) = \sqrt{T(I_1)T(I_2)}$.

5. Analogues of Theorem B. Since $\varrho(I) = \lim_{\sigma \to +\infty} \frac{\ln \varrho(\sigma)}{\sigma}$, we define the generalized type $T_{\alpha\beta}(I)$ of integral (1) by the formula

$$
T_{\alpha\beta}(I) = \lim_{\sigma \to +\infty} \frac{\exp\{\alpha(\ln I(\sigma))\}}{\exp\{\varrho(\sigma)\}}, \quad (\varrho = \varrho_{\alpha\beta}(I)).
$$

Theorem 1 implies the following lemma.

Lemma 2. Suppose that the functions $\alpha \in L$ and $\beta \in L$ are continuously differentiable, $x\alpha'(x) = o(1)$, $x\beta'(x) = O(1)$ as $x \to +\infty$, and for every $c \in (-\infty, +\infty)$

$$
\frac{d\beta^{-1}(\alpha(x) + c)}{d\ln x} = O(1), \quad x \to +\infty.
$$

(15)

If $F \in V$, f has regular variation in regard to F and for every $c \in (-\infty, +\infty)$

$$
\ln F(x) = o(x\beta^{-1}(\alpha(x) + c)), \quad x \to +\infty,
$$

(16)

then

$$
T_{\alpha\beta}(I) = \lim_{x \to +\infty} \frac{\exp\{\alpha(x)\}}{\exp\left\{\beta \left(\frac{1}{x} \ln \frac{1}{f(x)} \right) \right\}}.
$$

Indeed, if $\alpha \in L$ and $x\alpha'(x) = o(1)$ as $x \to +\infty$ then $\alpha \in L_{si}$, and if $\beta \in L$ and $x\beta'(x) = O(1)$ as $x \to +\infty$ then $\beta \in L^0$. Hence it follows that if $\alpha(x) = e^{\alpha(x)}$, $\beta(x) = e^{\beta(x)}$ and $x\alpha'(x) = o(1)$, $x\beta'(x) = O(1)$ as $x \to +\infty$ then $\alpha \in L_{si}$ and $\beta \in L^0$. From (15) condition (3) follows with α and β instead of α and β. Condition (18) implies (4) with α and β instead of α and β. Therefore, Theorem 1 implies Lemma 2.
Theorem 7. Let functions $\alpha \in L$ and $\beta \in L$ be continuously differentiable, $x\alpha'(x) = o(1)$, $x\beta'(x) = O(1)$ as $x \to +\infty$ and (3) and (15) hold. Let $F \in V$, f and f_j have a regular variation in regard to F and (19) holds. Suppose that all integrals (10) have the same generalized order $\varrho_{\alpha\beta}(I_j) = \varrho \in (0, +\infty)$ and the generalized types $T_{\alpha\beta}(I_j) \in (0, +\infty)$. Suppose also that $f_1(x) > 0$ for all $x \geq x_0$ and for all $2 \leq j \leq m$

\[
\beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \leq (1 + o(1)) \beta \left(\frac{1}{x} \ln \frac{1}{f_1(x)} \right), \quad x \to +\infty.
\] (17)

If $\omega_j > 0$ for $1 \leq j \leq m$, $\sum_{1 \leq j \leq m} \omega_j = 1$ and

\[
\exp \left\{ \beta \left(\frac{1}{x} \ln \frac{1}{f(x)} \right) \right\} = (1 + o(1)) \prod_{j=1}^{m} \exp \left\{ \omega_j \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \right\}, \quad x \to +\infty,
\] (18)

then integral (1) has the generalized order $\varrho_{\alpha\beta}(I) = \varrho$ and the generalized type $T_{\alpha\beta}(I) \leq \prod_{j=1}^{m} T_{\alpha\beta}(I_j)^{\omega_j}$.

Proof. At first, we remark that from the conditions $x\alpha'(x) = o(1)$, $x\beta'(x) = O(1)$ as $x \to +\infty$ it follows that $\alpha \in L_{st}$ and $\beta \in L^0$, and (18) implies (4). Thus, the functions α, β, and F satisfy the assumptions of Theorem 1.

From (18) we have

\[
\beta \left(\frac{1}{x} \ln \frac{1}{f(x)} \right) = \sum_{j=1}^{m} \omega_j \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) + o(1), \quad x \to +\infty.
\] (19)

Therefore, by Theorem 1

\[
\frac{1}{\varrho_{\alpha\beta}(I)} = \lim_{x \to +\infty} \frac{1}{\alpha(x)} \beta \left(\frac{1}{x} \ln \frac{1}{f(x)} \right) \geq \sum_{j=1}^{m} \lim_{x \to +\infty} \frac{\omega_j}{\alpha(x)} \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) = \frac{1}{\varrho}.
\]

On the other hand, in view of (17) we obtain from (19)

\[
\frac{1}{\varrho_{\alpha\beta}(I)} \leq \sum_{j=1}^{m} \lim_{x \to +\infty} \frac{\omega_j}{\alpha(x)} \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) = \frac{1}{\varrho}.
\]

Thus, $\varrho_{\alpha\beta}(I) = \varrho$.

From (18) and Lemma 2 it follows that

\[
\frac{1}{T_{\alpha\beta}(I)} = \lim_{x \to +\infty} \frac{1}{\exp \alpha(x)} \prod_{j=1}^{m} \exp \left\{ \omega_j \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \right\} \geq \prod_{j=1}^{m} \lim_{x \to +\infty} \left(\frac{\exp \{ \omega_j \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \} }{\exp \alpha(x)} \right)^{\omega_j} = \prod_{j=1}^{m} \left(\frac{1}{T_{\alpha\beta}(I)} \right)^{\omega_j}.
\]

If we choose $\alpha(x) = \ln \ln \ln x$, $\beta(x) = \ln x$ for $x \geq x_0$, $m = 2$ and $\omega_j = 1/2$ then from Theorem 7 we obtain the following statement.
Corollary 4. Let \(F \in V \), \(\ln F(x) = o(x \ln \ln x) \) as \(x \to +\infty \) and the functions \(f \) and \(f_j \) \((j = 1, 2)\) have regular variation in regard to \(F \). Suppose that \(f_1(x) > 0 \) for all \(x \geq x_0 \) and
\[
\ln \left(\frac{1}{x} \ln \frac{1}{f_2(x)} \right) \leq (1 + o(1)) \ln \left(\frac{1}{x} \ln \frac{1}{f_1(x)} \right) \text{ as } x \to +\infty.
\]
If \(\lim_{\sigma \to +\infty} \ln \frac{\ln \ln \ln f(x)}{\ln \sigma} = \sigma \in (0, +\infty) \) for \(j = 1, 2 \) and
\[
\ln \frac{1}{f(x)} = (1 + o(1)) \sqrt{\ln \frac{1}{f_1(x)} \ln \frac{1}{f_2(x)}}, \quad x \to +\infty,
\]
then \(\lim_{\sigma \to +\infty} \ln \frac{\ln \ln \ln f(x)}{\ln \sigma} = \sigma \) and
\[
\lim_{x \to +\infty} \exp_3 \left\{ \left(\frac{x}{\ln f(x)} \right)^\sigma \right\} \leq \sqrt{\lim_{x \to +\infty} \exp_3 \left\{ \left(\frac{x}{\ln f(x)} \right)^\sigma \right\} \lim_{x \to +\infty} \exp_3 \left\{ \left(\frac{x}{\ln f(x)} \right)^\sigma \right\}},
\]
where \(\exp_3 x = \exp\{\exp\{\exp\{e^x\}\}\} \).

For integral (1) of finite modified generalized orders we define the generalized type \(T_{\alpha \beta}^M(I) \) by the formula
\[
T_{\alpha \beta}^M(I) = \lim_{\sigma \to +\infty} \frac{\ln I(\sigma)}{\ln \sigma \alpha^{-1}(\sigma \beta(\sigma))}, \quad (\sigma = \sigma_{\alpha \beta}^M(I)).
\]

Then the following lemma is true.

Lemma 3. Let \(\beta \in L \), \(\beta_1(x) = \alpha^{-1}(\sigma \beta(\sigma)) \in L_{si} \), the function \(F \in V \) satisfy condition
\(\ln F(x) = o(x \beta_1^{-1}(cx)) \) as \(x \to +\infty \) for every \(c \in (0, +\infty) \), and \(f \) have regular variation in regard to \(F \). Then
\[
T_{\alpha \beta}^M(I) = \lim_{x \to +\infty} \frac{x}{\alpha^{-1}}} \left(\frac{1}{\ln f(x)} \right)^{\sigma}).
\]

Indeed, \(\beta_1^{-1}(cx)) = \beta^{-1}(\alpha(\sigma)) \leq \beta^{-1}(\alpha(\sigma)) \), because from the condition \(\alpha \in L^0 \) it follows that \(\alpha(cx) \leq K(c)\alpha(cx) \) for every \(c \in (0, +\infty) \). Therefore, if we choose \(\alpha_1(x) \equiv x \) for \(x \geq x_0 \), then from Theorem 3 with \(\alpha_1 \) and \(\beta_1 \) instead of \(\alpha \) and \(\beta \) we deduce Lemma 3.

Theorem 8. Let \(\beta \in L_{si} \), \(\alpha(x) = (1 + o(1)) \ln x \) as \(x \to +\infty \) and \(\beta_1(x) = \alpha^{-1}(\sigma \beta(\sigma)) \in L_{si} \). Let \(F \in V \), \(\ln F(x) = o(x \beta_1^{-1}(cx)) \) as \(x \to +\infty \) and \(f \) and \(f_j \) have regular variation in regard to \(F \). Suppose that all integrals (10) have the same modified generalized order \(\sigma_{\alpha \beta}^M(I_j) = \sigma \in (0, +\infty) \) and the modified generalized types \(T_{\alpha \beta}^M(I_j) \in (0, +\infty) \). Suppose also that \(f_1(x) > 0 \) for all \(x \geq x_0 \) and (17) holds.

If \(\omega_j > 0 \) for \(1 \leq j \leq m \), \(\sum_{1 \leq j \leq m} \omega_j = 1 \), and
\[
\alpha^{-1} \left(\frac{1}{\ln f(x)} \right)^{\omega_j} = (1 + o(1)) \prod_{j=1}^{m} \alpha^{-1} \left(\frac{1}{\ln f_j(x)} \right)^{\omega_j}, \quad x \to +\infty,
\]
then integral (1) has the modified generalized order \(\sigma_{\alpha \beta}^M(I) = \sigma \) and the modified generalized type \(T_{\alpha \beta}^M(I) \leq \prod_{j=1}^{m} T_{\alpha \beta}^M(I_j)^{\omega_j} \).
Proof. At first, we remark that the condition \(\ln F(x) = o(x\beta^{-1}(x)) \) as \(x \to +\infty \) implies (4), because \(\beta^{-1}(x) = \beta^{-1}(\alpha(t)/\varrho)) \). Thus, the functions \(\alpha, \beta, \) and \(F \) satisfy the conditions of Theorem 3.

Since \(\alpha(x) = (1 + o(1)) \ln x \) as \(x \to +\infty \), from (20) we obtain (19). As above from (19) by Theorem 3 \(1/\varrho_{\alpha\beta}^M(I) \geq 1/\varrho \). On the other hand, from (17) and (19) as above we get \(1/\varrho_{\alpha\beta}^M(I) \leq 1/\varrho \). Thus, \(\varrho_{\alpha\beta}^M(I) = \varrho \).

From (20) and Lemma 3 it follows that

\[
\frac{1}{T_{\alpha\beta}^M(I)} = \lim_{x \to +\infty} \frac{1}{x} \alpha^{-1} \left(\beta \left(\frac{1}{x} \ln \frac{1}{f(x)} \right) \right) = \lim_{x \to +\infty} \frac{1}{x} \prod_{j=1}^{m} \left(\alpha^{-1} \left(\beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \right) \right)^{\omega_j} \\
= \prod_{j=1}^{m} \lim_{x \to +\infty} \left(\frac{1}{x} \alpha^{-1} \left(\beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \right) \right)^{\omega_j} = \prod_{j=1}^{m} \left(\frac{1}{T_{\alpha\beta}^M(I)} \right)^{\omega_j}.
\]

If we choose \(\alpha(x) = \ln x, \beta(x) = \ln \ln x \) for \(x \geq x_0, m=2 \) and \(\omega_j = 1/2 \) then from Theorem 8 we obtain the following statement.

Corollary 5. Let \(F \in V, \ln F(x) = o(x\exp(x^e)) \) as \(x \to +\infty \) and the functions \(f \) and \(f_j, j = 1, 2 \), have regular variation in regard to \(F \). Suppose that that \(f_i(x) > 0 \) for all \(x \geq x_0 \) and \(\ln \left(\frac{1}{x} \ln \frac{1}{f_i(x)} \right) \leq (1 + o(1)) \ln \left(\frac{1}{x} \ln \frac{1}{f_1(x)} \right) \) as \(x \to +\infty \).

If \(\lim_{\sigma \to +\infty} \frac{\ln \ln I(\sigma) - \ln \sigma}{\ln \sigma} = \varrho \in (0, +\infty) \) for \(j = 1, 2 \) and

\[
\ln \left(\frac{1}{x} \ln \frac{1}{f(x)} \right) = (1 + o(1)) \sqrt{\ln \left(\frac{1}{x} \ln \frac{1}{f_1(x)} \right) \ln \left(\frac{1}{x} \ln \frac{1}{f_2(x)} \right)}, \quad x \to +\infty,
\]

then \(\lim_{\sigma \to +\infty} \frac{\ln \ln I(\sigma) - \ln \sigma}{\ln \sigma} = \varrho \) and \(\lim_{\sigma \to +\infty} \frac{\ln I(\sigma) - \ln \sigma}{\ln \sigma} \leq \sqrt{\lim_{\sigma \to +\infty} \ln \frac{I(\sigma)}{\sigma \ln \sigma} \lim_{\sigma \to +\infty} \ln \frac{I(\sigma)}{\sigma \ln \sigma}}. \)

Finally, we prove a theorem, which supplements Theorems 6 and 8.

Theorem 9. Let either \(\alpha \in L_{si} \) and \(\beta \in L^0 \) or \(\alpha \in L^0 \) and \(\beta \in L_{si} \), \(F \in V, \ln F(x) = o(x\beta^{-1}(\alpha^t(x))) \) as \(x \to +\infty \) for every \(c \in (0, +\infty) \) and integrals (10) have modified general orders \(\varrho_{\alpha\beta}^M(I_j) \in (0, +\infty) \). Suppose that \(f \) has regular variation in regard to \(F \) and (11) holds. Then:

1) if \(f_1(x) > 0 \) for all \(x \geq x_0 \) and for all \(2 \leq j \leq m_0 \)

\[
\ln \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \leq (1 + o(1)) \ln \beta \left(\frac{1}{x} \ln \frac{1}{f_1(x)} \right), \quad x \to +\infty.
\]

(21)

then

\[
\lim_{\sigma \to +\infty} \frac{1}{\ln \beta(\sigma)} \ln \alpha \left(\frac{\ln I(\sigma)}{\sigma} \right) = 1
\]

(22)

and \(\varrho_{\alpha\beta}^M(I) \leq \prod_{j=1}^{m} \left(\varrho_{\alpha\beta}^M(I_j) \right)^{\omega_j} \).

2) if \(v(x) = -(\ln f(x))^t \) is continuous and increasing on \([x_0, +\infty) \) and all integrals (10) have regular modified \(\alpha\beta \)-growth then integrals (1) has regular modified \(\alpha\beta \)-growth and

\[
\varrho_{\alpha\beta}^M(I) = \prod_{j=1}^{m} \left(\varrho_{\alpha\beta}^M(I_j) \right)^{\omega_j}.
\]
Proof. Since \(g_{\alpha \beta}^M(I_j) \in (0, +\infty) \), we have
\[
\lim_{\sigma \to +\infty} \frac{1}{\ln \beta(\sigma)} \ln \alpha \left(\frac{\ln I_j(\sigma)}{\sigma} \right) = 1.
\]

It is known ([9]) that if \(h \in L^0 \) then \(h \) is a RO-increase function ([10, p.86]), that is for every \(\lambda \in [1, +\infty) \) and all \(x \geq x_0 \) the inequalities
1. \(1 \leq h(\lambda x)/h(x) \leq M(\lambda) < +\infty \), whence it follows that \(\ln h \in L_{si} \). Therefore, using Theorem 3 with \(\ln \alpha \) and \(\ln \beta \) instead of \(\alpha \) and \(\beta \) (the condition \(\ln F(x) = o(x\beta^{-1}(\alpha c(x))) \) as \(x \to +\infty \) for every \(c \in (0, +\infty) \) implies condition (4)), we obtain
\[
\lim_{x \to +\infty} \frac{1}{\ln \alpha(x)} \ln \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) = 1
\]
for each \(j = 1, 2, \ldots, m \), and in view of (11)
\[
\lim_{x \to +\infty} \frac{1}{\ln \alpha(x)} \ln \beta \left(\frac{1}{x} \ln \frac{1}{f(x)} \right) = \lim_{x \to +\infty} \frac{1}{\ln \alpha(x)} \sum_{j=1}^{m} \omega_j \ln \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \geq
\]
\[
\geq \sum_{j=1}^{m} \omega_j \lim_{x \to +\infty} \frac{1}{\ln \alpha(x)} \left(\frac{1}{x} \ln \frac{1}{f_1(x)} \right) = 1.
\]

On the other hand by virtue of (21)
\[
\lim_{x \to +\infty} \frac{1}{\ln \alpha(x)} \ln \beta \left(\frac{1}{x} \ln \frac{1}{f(x)} \right) = \frac{1}{\ln \alpha(x)} \left(\omega_1 \ln \beta \left(\frac{1}{x} \ln \frac{1}{f_1(x)} \right) + \sum_{j=2}^{m} \omega_j \ln \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \right) \leq
\]
\[
\leq \lim_{x \to +\infty} \frac{1}{\ln \alpha(x)} \sum_{j=1}^{m} \omega_j \ln \beta \left(\frac{1}{x} \ln \frac{1}{f_1(x)} \right) = 1,
\]
i. e.
\[
\lim_{x \to +\infty} \frac{\ln \alpha(x)}{\ln \beta \left(\frac{1}{x} \ln \frac{1}{f(x)} \right)} = 1
\]
and by Theorem 3 equality (22) is true.

The condition \(\ln F(x) = o(x\beta^{-1}(\alpha c(x))) \) as \(x \to +\infty \) for every \(c \in (0, +\infty) \) implies the condition \(\ln F(x) = o(x\beta^{-1}(\alpha c(x))) \) as \(x \to +\infty \) for every \(c \in (0, +\infty) \). Therefore, by Theorem 3 in view of (11)
\[
1 = \lim_{x \to +\infty} \frac{1}{\ln \alpha(x)} \beta \left(\frac{1}{x} \ln \frac{1}{f_1(x)} \right) = \lim_{x \to +\infty} \prod_{j=1}^{m} \left(\frac{1}{\alpha(x)} \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \right)^{\omega_j} \geq
\]
\[
\geq \prod_{j=1}^{m} \lim_{x \to +\infty} \left(\frac{1}{\alpha(x)} \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \right)^{\omega_j} = \prod_{j=1}^{m} (g_{\alpha \beta}^M(I_j))^{\omega_j},
\]
i. e. the statement 1) is proved.
Now, if $\varrho_{\alpha\beta}^M(I_j) = \varrho_{\alpha\beta}^M(I_j)$ then by Theorem 4 for each $j = 1, 2, \ldots m$

\[
\frac{1}{\alpha(x)} \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) \rightarrow \frac{1}{\varrho_{\alpha\beta}^M(I_j)}, \quad x \rightarrow +\infty,
\]

and from (11) we get

\[
\frac{1}{\alpha(x)} \beta \left(\frac{1}{x} \ln \frac{1}{f(x)} \right) = (1 + o(1)) \prod_{j=1}^m \frac{1}{\alpha(x)} \beta \left(\frac{1}{x} \ln \frac{1}{f_j(x)} \right) =
\]

\[
= (1 + o(1)) \prod_{j=1}^m \left(\frac{1}{\varrho_{\alpha\beta}^M(I_j)} \right)^{\omega_j}, \quad x \rightarrow +\infty.
\]

Hence by Theorems 3 and 4 it follows that integral (1) has regular modified $\alpha\beta$-growth and $\varrho_{\alpha\beta}^M(I) = \prod_{j=1}^m (\varrho_{\alpha\beta}^M(I_j))^{\omega_j}$.

REFERENCES