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In this paper we investigate locally compact semitopological graph inverse semigroups.
Our main result is the following: if a directed graph E is strongly connected and has finitely
many vertices, then any Hausdorff shift-continuous locally compact topology on the graph
inverse semigroup G(E) is either compact or discrete. This result generalizes results of Gutik
and Bardyla who proved the above dichotomy for Hausdorff locally compact shift-continuous
topologies on polycyclic monoids P1 and Pλ, respectively.

1. Introduction and background. In this paper all topological spaces are assumed to be
Hausdorff. We shall follow the terminology of [11, 14, 19, 26]. A semigroup S is called an
inverse semigroup if for each element a ∈ S there exists a unique element a−1 ∈ S such that
aa−1a = a and a−1aa−1 = a−1. The element a−1 is called the inverse of a. The map S → S,
x 7→ x−1 assigning to each element of an inverse semigroup its inverse is called the inversion.

A directed graph E = (E0, E1, r, s) consists of sets E0, E1 of vertices and edges, respecti-
vely, together with functions s, r : E1 → E0, called the source and the range functions,
respectively. In this paper we refer to directed graphs simply as “graphs". A path x = e1 . . . en
in a graph E is a finite sequence of edges e1, . . . , en such that r(ei) = s(ei+1) for each posi-
tive integer i < n. We extend the source and range functions s and r on the set Path(E)
of all pathes in graph E as follows: for each x = e1 . . . en ∈ Path(E) put s(x) = s(e1) and
r(x) = r(en). By |x| we denote the length of the path x. We consider each vertex being a
path of length zero. An edge e is called a loop if s(e) = r(e). A path x is called a cycle
if s(x) = r(x) and |x| > 0. Let a = e1 . . . en and b = f1 . . . fm be two paths such that
r(a) = s(b). Then by ab we denote the path e1 . . . enf1 . . . fm. A path x is called a prefix
(resp. suffix) of a path y if there exists path z such that y = xz (resp. y = zx). A graph E is
called finite if the sets E0 and E1 are finite and infinite in the other case. A graph E is called
strongly connected if for each pair of vertices e, f ∈ E0 there exist paths u, v ∈ Path(E) such
that s(u) = r(v) = e and s(v) = r(u) = f .

A topological (inverse) semigroup is a Hausdorff topological space together with a conti-
nuous semigroup operation (and an inversion, respectively). If S is a semigroup (an inverse
semigroup) and τ is a topology on S such that (S, τ) is a topological (inverse) semigroup,
then we shall call τ a (inverse) semigroup topology on S. A semitopological semigroup is a
Hausdorff topological space together with a separately continuous semigroup operation. For
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each element x of a semigroup S the map lx(s) : s → xs (rx(s) : s → sx, resp.) is called a left
(right, resp.) shift on the element x. Observe that semigroup S endowed with a topology is
semitopological iff for each element x ∈ S left and right shifts are continuous. A topology τ
on a semigroup S is called shift-continuous if (S, τ) is a semitopological semigroup. A semi-
topological inverse semigroup S is called quasi-topological if the inversion map S → S,
x 7→ x−1, is continuous.

The bicyclic monoid C (p, q) is the semigroup with the identity 1 generated by two
elements p and q subject to the condition pq = 1. The bicyclic semigroup admits only
the discrete semigroup topology [13]. In [10] this result was extended over the case of semi-
topological semigroups. The closure of a bicyclic semigroup in a locally compact topological
inverse semigroup was described in [13]. In [15] Gutik proved the following theorem.

Theorem A ([15, Theorem 1]). Any locally compact shift-continuous topology on the bi-
cyclic monoid with adjoined zero is either compact or discrete.

In [6] Gutik’s theorem was generalized over the α-bicyclic monoid.
One of generalizations of the bicyclic semigroup is a λ-polycyclic monoid. For a non-zero

cardinal λ, the λ-polycyclic monoid Pλ is the semigroup with identity and zero given by the
presentation:

Pλ =
⟨
{pi}i∈λ ,

{
p−1
i

}
i∈λ | p−1

i pi = 1, p−1
j pi = 0 for i ̸= j

⟩
.

Polycyclic monoid Pk over a finite cardinal k was introduced in [24]. Algebraic properties
of a semigroup Pk were investigated in [20] and [21]. Algebraic and topological properties of
the λ-polycyclic monoid were investigated in [8] and [9]. In particular, it was proved that for
every non-zero cardinal λ the only locally compact semigroup topology on the λ-polycyclic
monoid is the discrete topology. Observe that the bicyclic semigroup with an adjoined zero
is isomorphic to the polycyclic monoid P1. Hence Gutik’s Theorem A can be reformulated in
the following way: any locally compact shift-continuous topology on the polycyclic monoid
P1 is either compact or discrete. In [7] Theorem A was generalized as follows.

Theorem B ([7, Main Theorem]). Any locally compact shift-continuous topology on the
λ-polycyclic monoid Pλ is either compact or discrete.

For a directed graph E = (E0, E1, r, s) the graph inverse semigroup (or simply GIS)
G(E) over E is a semigroup with zero generated by the sets E0, E1 together with the set
E−1 = {e−1 | e ∈ E1} satisfying the following relations for all a, b ∈ E0 and e, f ∈ E1:

(i) a · b = a if a = b and a · b = 0 if a ̸= b;

(ii) s(e) · e = e · r(e) = e;

(iii) e−1 · s(e) = r(e) · e−1 = e−1;

(iv) e−1 · f = r(e) if e = f and e−1 · f = 0 if e ̸= f .

Graph inverse semigroups are generalizations of the polycyclic monoids. In particular,
for every non-zero cardinal λ, the λ-polycyclic monoid is isomorphic to the graph inverse
semigroup over the graph E which consists of one vertex and λ distinct loops. However,
in [4] it was proved that the λ-polycyclic monoid is a universal object in the class of graph
inverse semigroups. More precisely, each GIS G(E) embeds as an inverse subsemigroup into
the λ-polycyclic monoid Pλ with λ ≥ |G(E)|.



ON LOCALLY COMPACT SEMITOPOLOGICAL GRAPH INVERSE SEMIGROUPS 21

According to [16, Chapter 3.1], each non-zero element of the graph inverse semigroup
G(E) is of the form uv−1 where u, v ∈ Path(E) and r(u) = r(v). A semigroup operation in
G(E) is defined by the formulas:

u1v
−1
1 · u2v

−1
2 =


u1wv

−1
2 , if u2 = v1w for some w ∈ Path(E);

u1(v2w)
−1, if v1 = u2w for some w ∈ Path(E);

0, otherwise,

uv−1 · 0 = 0 · uv−1 = 0 · 0 = 0.

Simple verifications show that G(E) is an inverse semigroup and (uv−1)−1 = vu−1.
We shall say that GIS G(E) satisfies condition (⋆) if for each infinite subset A ⊂ Path(E)

there exists an infinite subset B ⊂ A and an element µ ∈ G(E) such that for each x ∈ B,
µ · x ∈ Path(E) and |µ · x| > |x|.

Graph inverse semigroups play an important role in the study of rings and C∗-algebras
(see [1, 3, 12, 18, 25]). Algebraic properties of graph inverse semigroups were studied in
[2, 4, 16, 17, 20, 22]. In [23] it was showed that a locally compact topological GIS G(E)
over a finite graph E is discrete. In [5, Theorem 1] the author characterized graph inverse
semigroups admitting only discrete locally compact semigroup topology:

Theorem C. The discrete topology is the only locally compact semigroup topology on a
graph inverse semigroup G(E) if and only if G(E) satisfies the condition (⋆).

Further we shall often use the following fact proved in [23, Lemma 1]:

Lemma 1. For any a, b ∈ G(E) \ {0}, the sets {x ∈ G(E) | x · a = b} and {x ∈ G(E) |
a · x = b} are finite.

2. Main results. Let G(E) be the graph inverse semigroup over a graph E. Fix an arbitrary
vertex e ∈ E0 and let Ce := {u ∈ Path(E) | s(u) = r(u) = e}. Put

Ce
1 := {u ∈ Ce | r(v) ̸= e for each non-trivial prefix v of u}.

By ⟨Ce⟩ (resp. ⟨Ce
1⟩) we denote the inverse subsemigroup of G(E) which is generated by the

set Ce (resp. Ce
1). Observe that e ∈ Ce

1 and e is the identity in ⟨Ce⟩.

Lemma 2. For each vertex e ∈ E0 of an arbitrary graph E the following statements hold:

1) if Ce
1 = {e} then ⟨Ce⟩ = {e};

2) if |Ce
1 \ {e}| = 1 then ⟨Ce⟩ is isomorphic to the bicyclic monoid;

3) if |Ce
1 \ {e}| = λ > 1 then ⟨Ce⟩ is isomorphic to the λ-polycyclic monoid Pλ.

Proof. Fix an arbitrary vertex e ∈ E0. The statement 1 is obvious.
Now we prove the statement 3. Suppose that |Ce

1 \ {e}| = λ > 1. Let Ce
1 \ {e} = {uα}α∈λ

be an enumeration of Ce
1 \ {e}. For convenience we put e = u−1. Observe that for each

element v ∈ Ce there exist elements uα1 , uα2 , . . . , uαn ∈ Ce
1 such that v = uα1uα2 . . . uαn .

Simple verifications show that

⟨Ce
1⟩ = {uv−1 | u, v ∈ Ce} ∪ {0} = ⟨Ce⟩.
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Let G = {pα}α∈λ∪{p−1
α }α∈λ be the set of generators of Pλ. We define a map f : Ce

1 → Pλ

in the following way: f(u−1) = 1 and f(uα) = pα for each α ∈ λ. Extend the map f on the set
⟨Ce⟩ in the following way: for each element u = uα1uα2 . . . uαn ∈ Ce put f(u) = pα1pα2 . . . pαn .
For each non-zero element uv−1 ∈ ⟨Ce⟩ put f(uv−1) = f(u)f(v)−1 and f(0) = 0. Obviously,
f is a bijection. Let us show that f is a homomorphism. Fix arbitrary elements ab−1, cd−1 ∈
⟨Ce⟩, where

a = uα1 . . . uαn , b = uβ1 . . . uβm , c = uγ1 , . . . uγk , d = uδ1 . . . uδt .

There are three cases to consider:

(1) ab−1 · cd−1 = ac1d
−1, i.e., c = bc1;

(2) ab−1 · cd−1 = a(db1)
−1, i.e., b = cb1;

(3) ab−1 · cd−1 = 0.

Suppose that case (1) holds, i.e., uγ1 , . . . uγk = uβ1 . . . uβmuγm+1 . . . uγk . Observe that

f(ac1d
−1) = f(uα1 . . . uαnuγm+1 . . . uγk)f(uδ1 . . . uδt)

−1 = pα1 . . . pαnpγm+1 . . . pγk(pδ1 . . . pδt)
−1.

On the other hand

f(ab−1) · f(cd−1) = pα1 . . . pαn(pβ1 . . . pβm)
−1 · pβ1 . . . pβmpγm+1 . . . pγk · (pδ1 . . . pδt)−1 =

= pα1 . . . pαnpγm+1 . . . pγk(pδ1 . . . pδt)
−1 = f(ac1d

−1).

Case (2) is similar to case (1). Consider case (3). In this case there exists a positive integer
i such that uβj

= uγj for every j < i and uβi
̸= uγi . Observe that f(ab−1 · cd−1) = f(0) = 0.

f(ab−1) · f(cd−1) =

= pα1 . . . pαnp
−1
βm

. . . p−1
βi
(p−1

βi−1
. . . p−1

β1
· pβ1 . . . pβi−1

)pγi . . . pγk · (pδ1 . . . pδt)−1 =

= pα1 . . . pαnp
−1
βm

. . . (p−1
βi

· pγi) . . . pγk · (pδ1 . . . pδt)−1 = 0 = f(ab−1 · cd−1).

Hence map f is an isomorphism.
Proof of statement 2 is similar to that of the statement 3.

The following Theorem extends Theorem 3 from [23] and Proposition 3.1 from [8] over
the case of semitopological graph inverse semigroups.

Theorem D. Let G(E) be a semitopological GIS. Then each non-zero element of G(E) is
an isolated point in G(E).

Proof. First we prove that each vertex a of the graph E is an isolated point in G(E). There
are two cases to consider:

1) there exists an edge x such that s(x) = a;

2) the set {x ∈ E1 | s(x) = a} is empty.

First consider the case 1. Fix an arbitrary edge x such that s(x) = a. Observe that both
sets xx−1 · G(E) and G(E) · xx−1 are retracts of G(E) and do not contain point a. Then
U(a) = G(E) \ (xx−1G(E) ∪ G(E) · xx−1) is an open neighborhood of a. Fix an arbitrary
open neighborhood U(xx−1) which does not contain 0. Since xx−1 · a · xx−1 = xx−1 the
continuity of left and right shifts in G(E) yields an open neighborhood V (a) ⊂ U(a) such
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that xx−1 · V (a) · xx−1 ⊂ U(xx−1). Fix an arbitrary element bc−1 ∈ V (a). Observe that
the choice of U(a) implies that x is neither a prefix of b nor c (in the other case bc−1 =
xx−1 · bc−1 ∈ xx−1 ·G(E) or bc−1 = bc−1 · xx−1 ∈ G(E) · xx−1). Since the set U(xx−1) does
not contain 0 we obtain that xx−1 ·bc−1 ·xx−1 ̸= 0 and, as a consequence, b and c are prefixes
of x. Hence b = c = a which implies that V (a) = {a}.

Next consider the case 2. Since a ·a ·a = a, the continuity of left and right shifts in G(E)
yields an open neighborhood V (a) such that a · V (a) · a ⊂ G(E) \ {0}. Fix an arbitrary
element bc−1 ∈ V (a). Since s(b) ̸= a and s(c) ̸= a we obtain that a · bc−1 · a ̸= 0 iff b = c = a
which implies that V (a) = {a}.

Hence each vertex a is an isolated point in G(E). Fix an arbitrary non-zero element
uv−1 ∈ G(E). Since u−1 · uv−1 · v = v−1 · v = r(v), the continuity of left and right shifts in
G(E) yields an open neighborhood V of uv−1 such that u−1 · V · v ⊆ {r(v)}. By Lemma 1,
the set u−1 · V is finite. Repeating our arguments, by Lemma 1, the set V is finite which
implies that point uv−1 is isolated in G(E).

Theorem D implies the following:

Corollary 1. Let G(E) be a locally compact non-discrete semitopological GIS. Then for
each compact neighborhoods U, V of 0 the set U \ V is finite.

Lemma 3. Each infinite GIS G(E) admits a unique compact non-discrete shift-continuous
topology τ . Moreover, the inversion is continuous in (G(E), τ).

Proof. The topology τ is defined in the following way: each non-zero element is isolated in
(G(E), τ) and an open neighborhood base of 0 consists of cofinite subsets of G(E) which
contain 0. Since for each open neighborhood V of 0, the set V −1 is cofinite in G(E) and
contains 0 we obtain that the inversion is continuous in (G(E), τ). To prove the continuity
of left and right shifts in (G(E), τ) we need to check it at the unique non-isolated point
0. Fix an arbitrary non-zero element uv−1 ∈ G(E) and an open neighborhood U of 0.
By the definition of topology τ the set A = G(E) \ U is finite. By Lemma 1, the set
B = {ab−1 ∈ G(E) | uv−1 · ab−1 ∈ A} is finite and, obviously, does not contain 0. Then
V = G(E) \ B is an open neighborhood of 0 such that uv−1 · V ⊆ U . Hence left shifts are
continuous in (G(E), τ). Continuity of right shifts in G(E) can be proved similarly.

Let G(E) be an arbitrary GIS and L,R,D be the Green relations on G(E). By Lem-
ma 3.1.13 from [16] for any two non-zero elements ab−1 and cd−1 of G(E) the following
conditions hold:

(1) ab−1Lcd−1 iff b = d;

(2) ab−1Rcd−1 iff a = c;

(3) ab−1Dcd−1 iff r(a) = r(b) = r(c) = r(d).

Further, for a path u ∈ Path(E) by Lu (resp. Ru) we denote an L-class (resp. R-class)
which contains the element uu−1. For a vertex e ∈ E0 by De denote the D-class containing e.
The condition (3) implies that each non-zero D-class contains exactly one vertex.

Recall that GIS G(E) satisfies the condition (⋆) if for each infinite subset A ⊂ Path(E)
there exists an infinite subset B ⊂ A and an element µ ∈ G(E) such that for each x ∈ B,
µ · x ∈ Path(E) and |µ · x| > |x|.
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Lemma 4. Let G(E) be a locally compact non-discrete semitopological GIS satisfying the
condition (⋆). Then there exists an element v ∈ Path(E) such that for each open compact
neighborhood U of 0 the set Lv ∩ U is infinite.

Proof. To derive a contradiction, suppose that for each element v ∈ Path(E) there exists an
open compact neighborhood Wv of 0 such that the set Lv ∩ Wv is finite. Fix an arbitrary
open compact neighborhood U of 0. By Corollary 1, the set U \Wv is finite for each element
v ∈ Path(E). Hence the set U ∩ Lv is finite for each path v. Let T = {v ∈ Path(E) |
Lv ∩U ̸= ∅}. Since the set U is infinite we obtain that the set T is infinite as well. For each
v ∈ T fix an element uvv

−1 ∈ Lv ∩ U such that |uv| ≥ |y| for every element yv−1 ∈ Lv ∩ U .
Since G(E) satisfies the condition (⋆), there exists an infinite subset A ⊂ {uv}v∈T and an
element µ ∈ G(E) such that µ · y ∈ Path(E) and |µ · y| > |y| for each element y ∈ A. Since
µ · 0 = 0, the continuity of left shifts in G(E) yields an open neighborhood V of 0 such that
µ · V ⊂ U . Since the set U \ V is finite (see Corollary 1), we obtain that there exists an
element v ∈ T such that uvv

−1 ∈ V ∩U . Observe that µ ·uvv
−1 ̸= 0, because µ ·uv ∈ Path(E)

and r(µ · uv) = r(uv) = r(v). Hence µ · uvv
−1 ∈ Lv ∩ U and |µ · uv| > |uv| which contradicts

the choice of the element uvv
−1.

Lemma 5. Let G(E) be a locally compact non-discrete semitopological GIS satisfying the
condition (⋆). Then there exists a D-class De such that the set L∩U is infinite for each open
neighborhood U of 0 and L-class L ⊂ De.

Proof. By Lemma 4, there exists element v ∈ Path(E) such that the set Lv∩U is infinite for
each open compact neighborhood U of 0. Recall that Dr(v) = {ab−1 | r(a) = r(b) = r(v)}.
Fix an arbitrary element u ∈ Path(E) ∩ Dr(v) and an open compact neighborhood U of 0.
Observe that element vu−1 ̸= 0, because r(u) = r(v). Since 0 · vu−1 = 0 the continuity of
right shifts in G(E) yields an open neighborhood V of 0 such that V · vu−1 ⊂ U . Observe
that Lv · vu−1 = Lu. By Corollary 1, the set Lv ∩ V is infinite. By Lemma 1, (Lv ∩ V ) · vu−1

is an infinite subset of U ∩ Lu.

Now our aim is to prove our main result which generalizes Theorem A and Theorem B.

Theorem. Let E be a strongly connected graph which has finitely many vertices. Then any
locally compact shift-continuous topology on GIS G(E) is either compact or discrete.

3. Proof of the Main Theorem. The proof of the Main Theorem is divided into a series of
5 lemmas. In the following lemmas 6–10 we assume that graph E is strongly connected and
has finitely many vertices. As a consequence, the semigroup G(E) satisfies the condition (⋆)
(see Remark 2 from [5]). By Theorem B, the Main Theorem holds if the graph E contains only
one vertex (in this case G(E) is either finite or isomorphic to a λ-polycyclic monoid). Hence
we can assume that the graph E contains at least two vertices. By e we denote an arbitrary
vertex such that the set L ∩ U is infinite for any open neighborhood U of 0 and any L-class
L ⊂ De (Lemma 5 implies that such vertex e exists). Recall that by ⟨Ce⟩ we denote the inverse
subsemigroup of G(E) which is generated by the set Ce = {u ∈ Path(E) | d(u) = r(u) = e}.

Lemma 6. Let G(E) be a locally compact non-discrete semitopological GIS. Then the set
⟨Ce⟩ \ U is finite for each open neighborhood U of 0.

Proof. By the assumption, there exists a vertex f and paths x, y such that s(x) = r(y) = e
and r(x) = s(y) = f . Since xy ∈ Ce

1 , by Lemma 2, ⟨Ce⟩ is an infinite set. Fix an arbitrary
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compact open neighborhood U of 0. Recall that Le∩U is infinite. Since the graph E contains
finitely many vertices, there exists a vertex f such that the set B = {u ∈ Le ∩U | s(u) = f}
is infinite. We claim that 0 is a limit point of ⟨Ce⟩. Indeed, if f = e then B ⊂ ⟨Ce⟩ and hence
0 is a limit point of ⟨Ce⟩. Assume that f ̸= e. Since graph E is strongly connected, there
exists a path v ∈ Path(E) such that s(v) = e and r(v) = f . Since v · 0 = 0, the continuity of
right shifts in G(E) yields an open neighborhood V of 0 such that v ·V ⊂ U . By Corollary 1,
the set U \ V is finite which implies that the set B ∩ V is infinite. By Lemma 1, the set
v(V ∩B) is an infinite subset of U . Observe that for each element u ∈ vB, s(u) = r(u) = e.
Hence 0 is a limit point of ⟨Ce⟩. Observe that ⟨Ce⟩∪{0} is a closed and hence locally compact
subsemigroup of G(E) which is isomorphic to the polycyclic monoid Pλ where λ = |Ce

1 \{e}|
(see Lemma 2). By Theorem B, semigroup ⟨Ce⟩ is compact which implies that ⟨Ce⟩ \ U is
finite for each open neighborhood U of 0.

Lemma 7. Let G(E) be a locally compact non-discrete semitopological GIS. Then the set
Le \ U is finite for each open neighborhood U of 0.

Proof. Suppose that there exists an open compact neighborhood U of 0 such that the set
A = Le \ U is infinite. Since the graph E has finitely many vertices, we can find a vertex
f and an infinite subset B ⊂ A such that s(u) = f for each element u ∈ B. The strong
connectedness of the graph E yields a path v such that s(v) = e and r(v) = f . Observe that
Lemma 6 implies that the set vB ∩ U is infinite, because vB is an infinite subset of ⟨Ce⟩.
Since v−1 · 0 = 0, the continuity of left shifts in G(E) yields an open neighborhood V of 0
such that v−1 · V ⊂ U . By Corollary 1, the set U \ V is finite. Then there exists an element
b ∈ B such that vb ∈ V . Hence v−1 · vb = b ∈ U which contradicts the choice of U .

Lemma 8. Let G(E) be a locally compact non-discrete semitopological GIS. Then the set
L \ U is finite for any open neighborhood U of 0 and any L-class L ⊂ De.

Proof. Fix an arbitrary L-class L ⊂ De and an open compact neighborhood U of 0. Clearly,
L = Lv for some path v such that r(v) = e. Since 0 · v−1 = 0, the continuity of right shifts in
G(E) yields an open neighborhood V of 0 such that V ·v−1 ⊂ U . Observe that Le ·v−1 = Lv.
By Lemma 7, the set Le \ V is finite. Hence the set Lv \ U is finite as well.

Lemma 9. Let G(E) be a locally compact non-discrete semitopological GIS. Then the set
De \ U is finite for each open neighborhood U of 0.

Proof. To derive a contradiction, suppose that there exists an open neighborhood U of 0
such that the set A = De \ U is infinite. Without loss of generality we can assume that U is
compact. Put T = {v ∈ Path(E) ∩De | Lv \ U ̸= ∅}. By Lemma 8, the set Lv \ U is finite
for each path v ∈ De. Since the set U is infinite, we obtain that the set T is infinite as well.
For each path v ∈ T by uv we denote an arbitrary path satisfying the following conditions:

• uvv
−1 /∈ U ;

• if uv−1 /∈ U for some path u then |uv| ≥ |u|.
Since the set T is infinite, the set B = {uvv

−1| v ∈ T} is infinite as well. Since graph E
has finitely many vertices, there exists a vertex f and an infinite subset C ⊂ T such that
s(uv) = f for each path v ∈ C. Put D = {uvv

−1 ∈ B| v ∈ C}. Fix an arbitrary path a
such that |a| ≥ 1 and r(a) = f (by the strong connectedness of graph E such path a always
exists). The choice of elements uv implies that aD = {auvv

−1| v ∈ C} is an infinite subset of
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U . Since a−1 ·0 = 0, the continuity of left shifts in G(E) yields an open neighborhood V ⊂ U
such that a−1 ·V ⊂ U . By Corollary 1, the set U \V is finite which implies that the set V ∩aD
is infinite. Fix an arbitrary element auvv

−1 ∈ aD ∩ V . Then a−1 · auvv
−1 = uvv

−1 ∈ U ∩D
which contradicts the choice of U .

The following lemma completes the proof of the Main Theorem.

Lemma 10. Any non-discrete locally compact shift-continuous topology on GIS G(E) is
compact.

Proof. By Lemma 7, the set Le \ U is finite for each open neighborhood U of 0. Fix an
arbitrary compact open neighborhood U of 0 and an arbitrary vertex f ∈ E0 \ {e}. The
strong connectedness of the graph E implies that there exists a path u such that s(u) = e and
r(u) = f . Since 0 · u = 0, the continuity of right shifts in G(E) yields an open neighborhood
V ⊂ U of 0 such that V · u ⊂ U . Observe that the set V ∩ Le is infinite and, by Lemma 1,
(V ∩ Le) · u is an infinite subset of Lf ∩ U . Hence we can apply Lemmas 5–9 to the vertex
f and obtain that the set Df \ U is finite. Since each non-zero D-class contains a unique
vertex and the graph E has finitely many vertices, we conclude that G(E) has finitely many
D-classes. Hence the set G(E) \ U is finite.

4. A generalization of the Main Theorem. Observe that the Main Theorem remains
true if the graph E is a disjoint union of two graphs E1 and E2 such that the graph E1

satisfies conditions of the Main Theorem and the GIS G(E2) is finite. However, the Main
Theorem can not be generalized over the case when the graph E is a disjoint union of two
graphs E1 and E2 such that both semigroups G(E1) and G(E2) are infinite.

Proposition 1. Let E be a graph which is a disjoint union of two graphs E1 and E2 such that
both semigroups G(E1) and G(E2) are infinite. Then there exists a topology τ on G(E) such
that (G(E), τ) is a locally compact, non-compact, non-discrete quasi-topological semigroup.

Proof. Assume that E = E1 ⊔ E2 and both semigroups G(E1) and G(E2) are infinite. We
introduce a topology τ on G(E) in the following way: each non-zero element uv−1 is isolated in
G(E). An open neighborhood base of the point 0 consists of cofinite subsets of G(E1) which
contains point 0. Similar arguments as in Lemma 3 imply the continuity of the inversion
in G(E). To prove that (G(E), τ) is a semitopological semigroup we need to consider the
following four cases:

1) uv−1 · 0 = 0, where uv−1 ∈ G(E1);

2) 0 · uv−1 = 0, where uv−1 ∈ G(E1);

3) uv−1 · 0 = 0, where uv−1 ∈ G(E2);

4) 0 · uv−1 = 0, where uv−1 ∈ G(E2).

The continuity of left (resp. right) shifts in the first (resp. second) case follows from Lemma 3.
The continuity of left and right shifts in cases three and four can be derived from the following
equation

uv−1 ·G(E1) = G(E1) · uv−1 = 0, where uv−1 ∈ G(E2).

Theorem C and Proposition 1 imply the following:
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Corollary 2. Let G(E) be a GIS which satisfies the dichotomy of the Main Theorem, i.e., a
locally compact shift-continuous topology on G(E) is either compact or discrete. Then G(E)
satisfies the condition (⋆) and the graph E cannot be represented as a union of two graphs
E1 and E2 such that semigroups G(E1) and G(E2) are infinite.

The above corollary leads us to the following question:

Question. Is it true that a GIS G(E) satisfies the dichotomy of the Main Theorem iff G(E)
satisfies the condition (⋆) and the graph E cannot be represented as a disjoint union of two
graphs E1 and E2 such that semigroups G(E1) and G(E2) are infinite?
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