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In the separable Hilbert space, we discuss the eigenvalue problem for a rank one singular
nonselfadjoint perturbation of a selfadjoint operator A, by nonsymmetric potential (δ1 ̸= δ2)
in the form Ã = A + α ⟨·, δ1⟩ δ2. We give the constructive description of such sort operator Ã
which possess two new points in the point spectrum in case of weakly singular perturbations.

1. Introduction. There are many publications (see [1]–[5] and references) devoted to the
constructive description and investigations of spectral properties of the formal expression
−∆+ αδ(x − x0), where ∆ = d2

dx2
is the Laplace operator perturbed by δ(x − x0)-potential

concentrated at the point x0 ∈ R and α ∈ R is a coupling constant.
The formal expression −∆+ αδ(x− x0) has more precise sense of a singular self-adjoint

perturbation ([1]–[5], [7]–[10], [18, 19]) in the form −∆̃ := −∆ + α⟨·, δ(x − x0)⟩δ(x − x0),
where α ∈ R ∪∞, δ(x − x0) ∈ H−2 := W−2

2 (R1) is a negative Sobolev space corresponding
to W 2

2 (R1) and ⟨·, ·⟩ is the dot product for W 2
2 (R1) and W−2

2 (R1). The operator −∆̃ acts as
follows:

−∆̃f = −f ′′ + αf(x0)δ(x− x0), (1)

for f ∈ D(∆̃) = {f ∈ W 1
2 (R) ∩W 2

2 (R \ {x0}) | f ′(x0+)− f ′(x0−) = αf(x0)} ([1, 5]).
In this article we consider some generalization of expression (1) in the form:

−∆̃f = −∆f + αf(x1)δ(x− x2), x1 ̸= x2, α ∈ C, (2)

D(∆̃) =
{
f ∈ W 2

2 (R1 \ {x1}) | f(x1+) = f(x1−), f ′(x2+)− f ′(x2−) = αf(x1)} .

In particular,

D(−∆̃∗) = {f ∈ W 1
2 (R) ∩W 2

2 (R1 \ {x2}) | f(x2+) = f(x2−), f ′(x1+)− f ′(x1−) = αf(x2)}.

If x1 = x2 and α ∈ R, then we obtain usual well-known case (1). Thus, we will investigate
and study the construction and spectral properties of rank one singular perturbation of the
form

Ã = A+ α⟨·, ω1⟩ω2, ω1, ω2 ∈ H−1 \ H, (3)
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where A = A∗ is a self-adjoint operator in the Hilbert space H, H−1 is the space from the
A-scale of spaces (see bellow) and α ∈ C ∪∞.

Expecting spectral properties of the operator −∆̃ in (2) (also of Ã in (3)) are different
from−∆̃ in (1) because Ã is a non self-adjoint operator in (3). But many standard facts of the
singular perturbation theory of self-adjoint operators ([5, 14]) and their spectral properties
have also corresponding analogies for expressions (2) and (3).

If ω1 = ω2 and α ∈ R ∪ {∞} in (3), then we obtain usual theory of the self-adjoint
singular perturbations ([5, 6, 14]). Hence, we obtain some natural generalization of the
singular perturbation theory, considering expressions of form (3).

Our investigations have nontrivial intersection with a general considerations presented
in [16]. In [16] authors considered a general object — the relation and its all proper extensions
instead of one Hermitian operator. We also observe the special interest to such operators
in [15]. In our investigations we meet really the pair of symmetric operators with defect
indices (1,1) both, and we consider only some class of non symmetric extensions. Presented
investigations have partially joint ideas from [8], where perturbed normal operators were
considered. The wave operators corresponding to (3) in case ω1, ω2 ∈ H were actively
investigated in [11]. Closely to (2) related results ([18, 19]) are devoted to the non-local
spectral problems (but in the case of self-adjoint perturbations).

The question: under what condition the Schrödinger operators have a point spectrum
immersed in the continuous one, is difficult from a physical point of view. The study of this
case is particularly unpromising, because there are good physical reasons to expect that such
eigenvalues should not exist ([20]). However, there are known examples of J. von Neumann
(1929) describing Hamiltonian perturbed by free smooth potentials such that a perturbed
operator becomes coherent states inside the continuous spectrum. The main considerations
for these cases mainly focused on how to avoid appearance of eigenvalues embedded in
the continuous spectrum, as this creates difficulties in the scattering theory. But paper [3]
contains the description of an unexpected example: rank one singularly perturbed self-adjoint
operator possesses two new eigenvalues such that one of them is immersed in a continuous
spectrum of the unperturbed (given) operator ([21]).

Since the study of singular perturbation operators is extended to perturbations by non-
symmetric potentials [9], you should expect also an associated pair of eigenvalues by rank
one singularly perturbed non-symmetric potentials. In general, the paper is devoted to the
description of an associated pair in our non-symmetric case.

There is a following advantage of approach ([3]): the proposed construction in [3] provides
that the rank one singularly perturbed self-adjoint operator Ã = A+ α⟨·, ω⟩ω possesses two
new points in the point spectrum λ, µ ∈ σp(Ã), i.e. Ãφλ = λφλ, Ãφµ = µφµ, such that
µ ∈ ρ(A) and λ ∈ σc(A). Due to the construction we must choose arbitrary µ ∈ ρ(A),
φλ ∈ H\D(A) and calculate λ and φµ. Really, if we start to choose φµ so we can guarantee
countable set of eigenvalues immersed in σc(A) that is not so unexpected.

In fact, we investigate the inverse eigenvalue problem for perturbations of non-symmetric
potentials. Namely, we present perturbation (3) which solves the eigenvalue problem for
the dual pair: λ, µ ∈ C, such that Ãφλ = λφλ, Ãφµ = µφµ, Ã

∗ψλ̄ = λ̄ψλ̄, Ã
∗ψµ̄ = µ̄ψµ̄,

(λ̄− µ̄)((A− µ)−1φλ, ψλ̄) = (φλ, ψλ̄) ̸= 0.
Let us remark that if µ, λ ∈ R, then we obtain the case closely related to the self-adjoint

one ([3]). But in a such case we can get a dual pair of eigenvalues with different eigenvectors
corresponding to Ã and Ã∗.

For realization of our ideas we use the mathematical tools from [9]. The tools in the case
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of self-adjoint operator (Ã = Ã∗) were used in [2].

2. Preliminaries. Let A = A∗ be a self-adjoint unbounded operator defined on DomA =
D(A) in a separable Hilbert space H with the inner product (·, ·) and the norm ∥ · ∥. Denote
by σ(·), σp(·), σc(·), ρ(·) spectrum, point spectrum, continuous spectrum and regular points
of corresponding operator.

Definition 1 ([9]). The linear closed operator Ã ̸= A densely defined in H is call singular-
singular perturbation ((s, s)-perturbation) of A if the sets

D = {f ∈ D(A) ∩D(Ã) | Af = Ãf}, (4)

D∗ = {f ∈ D(A) ∩D(Ã∗) | Af = Ã∗f} (5)

both are dense in H. We denote Ã ∈ Ps,s(A).

Let us note that Ã is a non self-adjoint operator in general.

It is clear that for each operator Ã ∈ Ps,s(A), there exists a pair of densely defined
restricted symmetric operators Ȧ := A � D and Ȧ∗ := A � D∗ with nontrivial deficiency
indices n±(Ȧ) = dim ker(Ȧ ∓ z)∗ ̸= 0, and n±(Ȧ∗) = dim ker(Ȧ∗ ∓ z)∗ ̸= 0, z ∈ ρ(A). In
this article we suppose that n±(Ȧ) = n±(Ȧ∗) = 1, i.e. we discuss the case Ã ∈ P1,1

s,s (A).

If D = D∗ and Ã = Ã∗, then we obtain usual abstract definition of the singularly
perturbed self-adjoint operators ([5, 14]) Ã ∈ Ps(A), i.e. Definition 1 generalizes the known
definition of the singular self-adjoint perturbation on the case of non self-adjoint one.

By {Hk(A)}k∈R1 we denote the associated A-scale of Hilbert spaces ([5]), where the space
Hk := Hk(A) = D(|A|k/2), k ≥ 1 with the norm ∥φ∥k = ∥(|A| + I)k/2φ∥ (and I stands for
the identity) φ ∈ Hk(A) and H−k := H−k(A) is a negative (dual) space i.e. the completion
of H in the norm ∥f∥−k = ∥(|A|+ I)−k/2f∥, f ∈ H. Let ⟨·, ·⟩ be a dual dot product between
the spaces Hk and H−k. For the next consideration, really, we take only k = 1, 2.

The operator A can be continued onH+1 and it is understanding as the bounded operator
from H+1 into H−1. (Analogously A can be continued on H and understanding as the
bounded operator from H on the whole H−2.) We denote this continuation by A. Therefore,
the expression ⟨φ, ω⟩ for ω = Aψ has the sense with φ, ψ ∈ H+1. And Rz = (A − z)−1,
z ∈ ρ(A) is the corresponding resolvent.

Since the vectors ω1, ω2 in (3) can belong toH−k\H−(k−1), k = 0, 1, 2, then we distinguish
different arts of (especially regular) perturbation. For this reason we denote Px,y(A), where
each index of the couple {x, y} can possess one of the symbol ”ss, ws, r”, that means ”strong
singular” and ”weakly singular” and ”regular” vector of perturbation. The symbol ”s” is
reserved for one of two cases — ”strong singular” and ”weakly singular” perturbation. After
previous description we give a definition.

Definition 2. If for the sets D and D∗ in (4) and (5) we have

dim(H⊖D) = 0, dim(H+1 ⊖D) = 1 (= n ̸= 0),

dim(H⊖D∗) = 0, dim(H+1 ⊖D∗) = 1 (= m ̸= 0),

then the perturbation is called ”weakly-weakly” singular, i.e. (ws,ws)-singular of rank one-
one (i.e. (1, 1)) and is denoted by Ã ∈ P1,1

ws,ws(A) and for rank (n,m): (Ã ∈ Pn,m
ws,ws(A)).



DUAL PAIR OF EIGENVALUES IN RANK ONE SINGULAR PERTURBATIONS 159

If for the sets D and D∗ in (4) and (5) we have

dim(H+1 ⊖D) = 0, dim(H+2 ⊖D) = 1 (= n ̸= 0),

dim(H+1 ⊖D∗) = 0, dim(H+2 ⊖D∗) = 1 (= m ̸= 0),

then the perturbation is called ”strong-strong” singular, i.e. (ss, ss)-singular of rank one-one
(i.e. (1, 1)) and is denoted by Ã ∈ P1,1

ss,ss(A) and for rank (n,m): (Ã ∈ Pn,m
ss,ss(A)).

If for the sets D and D∗ in (4) and (5) we have

dim(H⊖D) = 1 (= n ̸= 0), dim(H⊖D∗) = 1 (= m ̸= 0),

then the perturbation is called ”regular-regular”, i.e. (r, r)-perturbation of rank one-one (i.e.
(1, 1)) and is denoted by Ã ∈ P1,1

r,r (A) and for rank (n,m): (Ã ∈ Pn,m
r,r (A)).

Of course, there may be mixed cases. Perturbations of mixed type (ss, ws), (ss, r), (ws, r),
i.e. Pss,ws(A),Pss,r(A) and Pws,r(A), as also cases n > 1, m > 1 in this publication are not
considered.

Here we consider only the case ”weakly-weakly” singular perturbation of rank one-one,
i.e. we investigate the spectral properties of the operator Ã ∈ P1,1

ws,ws(A). Another types
of perturbation will be considered in the next publications, since another cases need some
special methods.

Let us consider in A-scale an operator V such that D(V ) ⊆ H+1 and R(V ) ⊆ H−1. In
our case V = α⟨·, ω1⟩ω2 (compare with (3)). We define the operator A+ V as the sum

(A+ V )φ := (Aφ+ V φ), φ ∈ D(A+ V ) := {φ ∈ D(V )|Aφ+ V φ ∈ H},

shortly Ãf = (Af + α⟨f, ω1⟩ω2) � H, f ∈ H+1. Below without loss of understanding we
usually write A instead of A and Rz instead of Rz.

Let us present the particular definition of Ã ∈ P1,1
ws,ws(A), which follows directly from

Definitions 1 and 2.

Definition 3 ([7]). The operator Ã is called a rank one non-symmetric weakly singular
perturbation of a self-adjoint operator A in a separable Hilbert space H, if for ηi = A−1ωi,
such that ω1 ∈ H−1 \ H, or ω2 ∈ H−1 \ H, ω1 ̸= ω2:

D(Ã) =

{
ψ = φ+ bη2 | φ ∈ D(A), b =

(Aφ, η1)

1 + (A1/2η2, A1/2η1)

}
in the case (A1/2η2, A

1/2η1) ̸= −1; and

D(Aω1,ω2) = DH1+̇{cη}, DH1 = {φ ∈ D(A) | (Aφ, η1) = 0} (6)

in the case (A1/2η2, A
1/2η1) = −1; and the action is defined by the rule: Aω1,ω2ψ = Aφ.

3. The description and spectral properties of the rank one singular non-sym-
metric perturbations. We remark that if Ã ∈ Pws,ws(A) then for the adjoint operator we
have Ã∗ ∈ Pws,ws(A)..

Proposition 1. Each operator Ã ∈ P1,1
ws,ws(A) (Definitions 1 and 2 or 3) admits the repre-

sentation in the form
Ã = A+ α⟨·, ω1⟩ω2, (7)

with α ∈ C ∪ {∞} and ω1, ω2 ∈ H−1 \ H.
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The next theorem describes the rank one singular non-symmetric perturbations by the
resolvent form of corresponding operator.

Theorem 1 ([9]). For the resolvents Rz = (A−z)−1 and R̃z = (Ã−z)−1 of operators A = A∗

and Ã ∈ P1,1
ws,ws(A) in the separable Hilbert space H one can write the like M. Krein formula

for z, ξ, ζ ∈ ρ(A) ∩ ρ(Ã)
R̃z = Rz + bz(·, nz̄)mz, (8)

with
nz = (A− ξ)(A− z)−1nξ, mz = (A− ζ)(A− z)−1mζ , (9)

where nz,mz ∈ H+1 \ H+2 and

b−1
z − b−1

ξ = (ξ − z)(mξ, nz̄). (10)

The vectors nz,mz and the number bz are connected with ω1, ω2 from (7) as follows

nz = Rzω1, mz = Rzω2, −b−1
z = α−1 + ⟨ω2, Rz̄ω1⟩,

where α ̸= 0.

We can include the case α = 0 into consideration, since if α = 0, one can put bz ≡ 0 and
have R̃z ≡ Rz.

Possibly bz = ∞, and it is so if and only if z ∈ σp(Ã), but (8) is also valid for such case.
The continuous spectrum σc(A) of the operator A under the finite rank perturbations is

unchangeable i.e. σc(A) = σc(Ã), Ã ∈ Pn,n
s,s (A), n <∞.

Theorem 2. Let Ã ∈ P1,1
ws,ws(A) be given in the form (8) with (9) and (10) possess a new

eigenvalue λ ∈ C in compare with A i.e. there exists λ ∈ σp(Ã), λ ̸∈ σp(A), then for
corresponding eigenvectors φ, ψ: Ãφ = λφ and Ã∗ψ = λ̄ψ the following relations hold

(λ− z)bz(φ, nz̄) = 1, φ = (A− z)(A− λ)−1mz; (11)

(λ̄− z̄)b̄z(ψ,mz) = 1, ψ = (A− z̄)(A− λ̄)−1nz̄. (12)

Proof. Using the equality Ãφ = λφ i.e. Rzφ+ bz(φ, nz̄)mz =
1

λ−zφ, we get

(λ− z)bz(φ, nz̄)(A− z)(A− λ)−1mz = φ

that gives (11).
Analogously considering Ã∗ψ = λ̄ψ we can prove (12).

Analogously to Theorem 2 where Ã is given by (8) we have the next corollary where Ã
is given by (7).

Corollary 1. Let Ã ∈ P1,1
ws,ws(A) possesses new eigenvalue λ ∈ C in compare with A and

eigenvectors φ and ψ i.e. Ãφ = λφ and Ã∗ψ = λ̄ψ, then relations (11) and (12) in terms of
ω1, ω2 have a form:

α⟨(A− λ)−1ω2, ω1⟩ = −1, φ = (A− λ)−1ω2; (13)

ᾱ⟨(A− λ̄)−1ω1, ω2⟩ = −1, ψ = (A− λ̄)−1ω1. (14)
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We will call the formulation of Theorem 2 as direct spectral problem, one can consider
the inverse problem in the next theorem.

Theorem 3. For a given self-adjoint operator A = A∗ in a separable Hilbert space H and
λ ∈ C and vectors φ, ψ ∈ H+1 \ H+2, such that ⟨(A − λ̄)φ, ψ⟩ ̸= 0, there exists unique
Ã ∈ P1,1

ws,ws(A) such that Ãφ = λφ and Ã∗ψ = λ̄ψ.

The operator Ã is defined by (8) as follows

R̃z = Rz + bz(·, nz̄)mz, (15)

with

mz = (A− λ)(A− z)−1φ, nz̄ = (A− λ̄)(A− z̄)−1ψ (16)

and

b−1
z = (λ− z)(φ, nz̄),

(
b̄−1
z = (λ̄− z̄)(ψ,mz)

)
. (17)

Theorems 1–3 in case of the self-adjoint perturbed operator Ã = Ã∗ are proved in [2, 10].

4. Dual pair of eigenvalues. Since Ã ∈ P1,1
ws,ws(A) in general is non self-adjoint operator

then the definition of dual pair of eigenvalues is different from [3].

Definition 4. The couple of numbers λ, µ ∈ C is called a dual pair of eigenvalues of singu-
larly perturbed operator Ã ∈ P1,1

ws,ws(A), if

Ãφλ = λφλ, Ãφµ = µφµ, Ã
∗ψλ̄ = λ̄ψλ̄,

Ã∗ψµ̄ = µ̄ψµ̄, (λ̄− µ̄)((A− µ)−1φλ, ψλ̄) = (φλ, ψλ̄) ̸= 0.

The next theorem describes the method of construction of the dual pair.

Theorem 4. Let A = A∗ be a self-adjoint operator defined on D(A) in a separable Hilbert
space H. For an arbitrary fixed µ ∈ ρ(A) and vectors φλ, ψλ̄ ∈ H+1 \ H+2, such that
(φλ, ψλ̄) ̸= 0, there exists an unique non-symmetric singularly perturbed operator Ã ∈
P1,1
ws,ws(A), such that (µ, λ) is dual pair, where λ̄ := µ̄ +

(φλ,ψλ̄)

((A−µ)−1φλ,ψλ̄)
is an eigenvalue with

the eigenvector φµ = (A− λ)(A− µ)−1φλ.

The operator Ã∗ ∈ P1,1
ws,ws(A) has eigenvectors ψλ̄, ψµ̄ = (A− λ̄)(A− µ̄)ψλ̄.

If the operator Ã is given in the form Ã = A + α⟨·, ω1⟩ω2, then it has the coupling
constant α = − 1

(φλ,ω1)
(or ᾱ = − 1

(ψλ̄,ω2)
) with corresponding vectors

ω2 = (A− µ)φλ −
(ψλ̄, φλ)

((A− µ)ψλ̄, φλ)
φλ, ω1 = (A− µ̄)ψλ̄ −

(φλ, ψλ̄)

((A− µ)φλ, ψλ̄)
ψλ̄. (18)

Proof. We start with the proof of Theorem 4. For an arbitrary µ ∈ ρ(A) and φ = φλ ∈
H+1 \D(A), ψ = ψλ̄ ∈ H+1 \D(A) we put

λ̄ = µ̄+
(φλ, ψλ̄)

((A− µ)−1φλ, ψλ̄)
. (19)
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In Theorem 3 there exists an unique operator Ã ∈ P1,1
ws,ws(A), such that Aφλ = λφλ and

Ã∗ψλ̄ = λ̄ψλ̄ given by resolvent form (8): R̃z = Rz + bz(·, nz̄)mz, with (16) and (17):

mz = (A− λ)−1(A− z)−1φλ, nz̄ = (A− λ̄)−1(A− z̄)−1φλ̄, bz =
1

(λ− z)(φ, nz̄)
. (20)

The factor (λ− z) in the denominator of the last expression shows that λ is an eigenvalue.
The second eigenvalue can be obtained from the fact that the second factor in the de-

nominator can be equals zero

0 = (φ, nz̄) = (φλ, (ψλ̄ + (z̄ − λ̄)(A− z̄)−1ψλ̄),

where from Theorem 3 nz̄ = (A−λ)(A− z̄)−1ψλ̄. Hence, (φλ, ψλ̄) = (λ̄− z̄)((A−z)−1φλ, ψλ̄)
and we obtain (19). Replacing z on µ in (20) we obtain φµ = mµ = (A − λ)(A − µ)−1φλ.
Particularly, φλ ⊥ ψµ̄.

Analogously using (A∗ − z)−1 = Rz + bz(·,mz)nz̄ for the operator Ã∗ ∈ P1,1
ws,ws(A), we

obtain Ã∗φλ̄ = λφλ̄ and Ã∗ψµ̄ = µ̄ψµ̄.

For the real dual pair λ, µ ∈ R we have the following corollary from Theorem 4.

Corollary 2. Let A = A∗ ≥ 0 be a positive self-adjoint operator defined on D(A) in a
separable Hilbert space H such that σ(A) = σc(A) = [0,∞). For an arbitrary number µ < 0
and vectors φλ, ψλ̄ ∈ H+1\H+2 such that (φλ, ψλ̄) ̸= 0, there exists an unique non-symmetric
singular perturbation of rank one Ã ∈ P1,1

ws,ws(A) such that has dual pair (µ, λ), where

λ = µ+ (φλ,ψλ)
((A−µ)−1φλ,ψλ)

are its eigenvalues with eigenvector φλ and φµ = (A−λ)(A−µ)−1φλ.

The operator Ã∗ ∈ P1,1
ws,ws(A) has the same eigenvalues with eigenvectors ψλ and ψµ =

(A− λ)(A− µ)ψλ. In particular λ ∈ (0,∞).

5. Examples.

Example 1. Let H = L2([1,∞), dx) and A be the multiplication operator of the indepen-
dent variable x, i.e. Af(x) = xf(x), f ∈ D(A), where D(A) := {f(x) ∈ L2 | xf(x) ∈ L2}.
Obviously, A ≥ 1 and D(A) = σ(A) = [1,∞). Let us put 0 = µ /∈ σ(A) and φ = φλ = x−1 1

3 ,

ψ = ψλ = x−1 2
3 , φ, ψ ∈ H+1 = L2([1,∞), xdx). Thus, H+2 = L2([1,∞), x2dx) and φ, ψ /∈

H+2, then

(φ, ψ) =

∫ ∞

1

dx

x3
=

1

2
, ((A− µ)−1φ, ψ) =

∫ ∞

1

dx

x4
=

1

3
.

Hence, λ = 3
2
∈ σ(A); and

φµ =
(
A− 3

2

)
A−1φλ =

x− 3
2

x7/3
, ψµ =

(
A− 3

2

)
A−1ψλ =

x− 3
2

x8/3
.

And from (16) it follows that

mz = (A− λ)(A− z)−1φλ =
x− 3/2

x− z

1

x4/3
, nz = (A− λ̄)(A− z̄)−1ψλ =

x− 3/2

x− z

1

x5/3
,

and from (17) we have: bz = (λ− z)−1(φλ, nz̄)
−1 = (3

2
− z)−1(φλ, nz̄)

−1, where

(φλ, ηz̄) =

∞∫
1

1

x11/3
x− 3/2

x− z

1

x1/3
dx =

( 3

2z3
− 1

z2

)
ln(1− z) +

( 3

2z2
− 1

z

)
+

3

4z
.
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Hence, (15) has form

(Ã− z)−1 =
1

x− z
+ bz

(
·, x− 3/2

x− z̄

1

x5/3

)
x− 3/2

x− z

1

x4/3
.

Furthermore,

ω1 =
x

x5/3
− 1/2

1/3

1

x5/3
=

2x− 3

2x5/3
, ω2 =

x

x4/3
− 1/2

1/3

1

x4/3
=

2x− 3

2x4/3
,

⟨φλ, ω1⟩ =
∫ ∞

1

1

x4/3
2x− 3

2x5/3
dx = ⟨ψλ, ω2⟩ =

∫ ∞

1

1

x5/3
x− 3

2x4/3
dx =

1

2

∫ ∞

1

2x− 3

x3
dx = 1/4.

Taking into account (13), (14), we deduce α = − 1
⟨φλ,ω1⟩ = −4.

Example 2. Let H = L2(R1, dx) and A plays the role of the Laplace operator, namely
Af(x) = −f ′′(x), D(A) = W 2

2 (R1) is a Sobolev space. The operator A ≥ 0 has purely
continuous spectrum i.e. σ(A) = σc(A) = [0,∞).

Let us put φλ = e−|x−1| and ψλ = e−|x+1|, µ = −1 (we consider the case λ, µ ∈ R and
λ, µ ∈ ρ(A)). For calculating λ we need (φλ, ψλ) =

∫
R e

−|x−1|e−|x+1|dx = 3e−2. Using [1], we
deduce

(A+ 1)−1φλ =

∫
R

1

2
e−|x−τ |e−|τ−1|dτ =

{
x
2
e−x+1, x > 1,

2−x
2
ex−1, x < 1,

(21)

and consequently ((A + 1)−1φλ, ψλ) =
13
4
e−2. Hence, λ = − 1

13
< 0, α = − 4

13
e2. And from

(18) we have ([21])

ω1 = δ−1(x)−
12

13
e−|x+1|, ω2 = δ+1(x)−

12

13
e−|x−1|.

Example 3. We slightly modify the previous example. Namely, we leave H = L2(R1, dx)
and the operator Af(x) = −f ′′(x), D(A) = W 2

2 (R1), but choose φλ = e−|x−1| and ψλ = e−|x|,
µ = −1 (we also consider the case λ, µ ∈ R, but λ ∈ σ(A), µ ∈ ρ(A)). To calculate λ we
need

(φλ, ψλ) =

∫
R
e−|x−1|e−|x|dx = 2e−1.

Using (21) we have ((A+ 1)−1φλ, ψλ) =
7
4
e−1. Hence, λ = 1

15
> 0, α = −1

7
e. And from (18)

we have ([21]) ω1 = δ0(x)− 8
7
e−|x|, ω2 = δ+1(x)− 8

7
e−|x−1|.

We can interpret expression (2) for applications as ”δ-interaction with a retarding” if
x1 < x2 that has a physical sense in the deviating differential models. With this connection,
the case x1 > x2 we can understand as a ”ahead potential”.

The operators (3) appear in the delay differential equations i.e. equations with retarded
potentials, equations that has functions with deviating (linearly transformed) argument (see
a general theory in [13, 17]).

The presented methods in the paper permit us to consider the corresponding Sturm-
Liouville type equations.
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