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An iterative differential-difference method for solving nonlinear least squares problems is
proposed and studied. The method uses the sum of the derivative of the differentiable part
of the operator and the divided difference of the nondifferentiable part instead of computing
Jacobian. We prove the local convergence of the proposed method and compute its convergence
rate. Finally, we carry out numerical experiments on a set of test problems.

1. Introduction. Nonlinear least squares problem often arise while solving overdetermined
systems of nonlinear equations, estimating parameters of physical processes by measure-
ment results, constructing nonlinear regression models for solving engineering problems,
etc. Effective methods for solving nonlinear least squares problems are the Gauss-Newton
method and its modifications ([1, 4, 5, 6, 7]). However, in practice, calculation of derivatives
could either be very difficult or impossible. For instance, functions can be too complex, then
derivatives may be computed approximately, or only values of functions are given (obtained
from experiments) at certain points but it is known that those functions are nonlinear. Hence,
one can use the iterative-difference methods ([1, 2, 8, 13]) that do not require calculation
of derivatives and yet approach the Gauss-Newton method in terms of the convergence rate
and the number of iterations.

In case when the nonlinear function has a differentiable and a nondifferentiable parts, one
can employ iterative-difference methods from [1, 2, 8, 13]. However, one would preferably
build iterative methods that take into account properties of the problem to solve. This is
the approach we would like to follow here. In particular, we can use only the derivative of
the differentiable operator instead of the full Jacobian, which, in fact, does not exist. In
general, the methods obtained using this approach converge slowly. There are some good
and efficient examples [1, 3, 9, 14] that use a sum of the derivative of the differentiable
part of the operator and the divided difference of the nondifferentiable part instead of the
Jacobian, however for solving nonlinear equations. In this work, we propose to follow this
approach and design a novel combined method for solving nonlinear least squares problems.
This method is based on the Gauss-Newton method, which is employed for the differentiable
part of the operator, and the Secant type’s method, which relies upon divided differences
for the nondifferentiable part. We study the local convergence of this method under the
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classic and generalized Lipschitz conditions. In the latter, we use some positive integrable
function instead of the Lipschitz constant. The generalized Lipschitz conditions for divided
differences were introduced in [11, 12]. To note, these conditions were successfully applied
to study the convergence of the combined Newton-Secant method ([9]) and the two-step
combined method ([10]) for nonlinear equations with nondifferentiable operator. On a set of
test problems, we show performance results of the derived method and compare these results
against the Secant type’s method ([8, 13]) and the Gauss-Newton type’s method.

2. Formulation of the problem. Let us consider the nonlinear least squares problem

min
x∈Rp

1

2
(F (x) +G(x))T (F (x) +G(x)), (1)

where residual function F + G : Rp → Rm (m ≥ p) is nonlinear by x, F is a continuously
differentiable function, G is a continuous function, differentiability of which, in general, is
not required.

For finding the solution of the problem (1), we propose the following modification of the
Gauss-Newton method combined with the Secant type’s method

xn+1 = xn − (AT
nAn)

−1AT
n (F (xn) +G(xn)), n = 0, 1, . . . , (2)

where An = F ′(xn) + G(xn, xn−1), F ′(xn) is a Fréchet derivative of F (x); G(xn, xn−1) is a
divided difference of the first order of function G

(
x
)

([15]) at points xn, xn−1; x0, x−1 are
given.

Setting An = F ′(xn), for solving the problem (1), from (2) we get an iterative Gauss-
Newton type’s method

xn+1 = xn − (F ′(xn)
TF ′(xn))

−1F ′(xn)
T (F (xn) +G(xn)), n = 0, 1, . . . . (3)

For m = n, the problem (1) turns into a system of nonlinear equations

F (x) +G(x) = 0.

In this case, the method (2) is transformed into the combined Newton-Secant method ([3, 14])

xn+1 = xn − (F ′(xn) +G(xn, xn−1))
−1(F (xn) +G(xn)), n = 0, 1, . . .

and the method (3) into the Newton type method for solving nonlinear equations ([18])

xn+1 = xn − (F ′(xn))
−1(F (xn) +G(xn)), n = 0, 1, . . . .

3. Analysis of the local convergence of the combined method (2). Let us, at first,
consider some auxiliary lemmas needed to obtain the main results.

Lemma 1. Let e(t) =
∫ t

0
E(u)du, where E is an integrable and positive nondecreasing

function on [0, T ]. Then, e(t) is monotonically increasing with respect to t on [0, T ].

Lemma 2 ([6, 17]). Let h(t) = 1
t

∫ t

0
H(u)du, where H is an integrable and positive nonde-

creasing function on [0, T ]. Then h(t) is nondecreasing with respect to t on (0, T ].

Additionally, h(t) at t = 0 is defined as h(0) = lim
t→0

(
1
t

∫ t

0
H(u)du

)
.
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Lemma 3 ([16]). Let s(t) = 1
t2

∫ t

0
S(u)u du, where S is an integrable and positive nonde-

creasing function on [0, T ]. Then s(t) is nondecreasing with respect to t on (0, T ].

The local convergence and its rate for the iterative process (2) are studied in the theorem
below. We use the Euclidean norm. Note that for the Euclidean norm ∥A−B∥ = ∥AT −BT∥,
where A,B ∈ Rm×p.

Theorem 1. Let F+G : Rp → Rm be continuous on an open convex subset D ⊂ Rp, and F is
a continuously differentiable function, G is a continuous function. Suppose that the problem
(1) has a solution x∗ ∈ D, and the inverse operation (AT

∗A∗)
−1 = [(F ′(x∗) + G(x∗, x∗))T×

×(F ′(x∗) +G(x∗, x∗))]−1 exists, such that ∥(AT
∗A∗)

−1∥ ≤ B.
On the subset D, the Fréchet derivative F ′ satisfies the radius Lipschitz condition with

L average

∥∥F ′(x)− F ′(xτ )
∥∥ ≤

∫ ρ(x)

τρ(x)

L(u)du, xτ = x∗ + τ(x− x∗), 0 ≤ τ ≤ 1, (4)

the function G has the first order divided difference G(x, y), and

∥G(x, y)−G(u, v)∥ ≤
∫ ∥x−u∥+∥y−v∥

0

M(u)du (5)

for all x, y, u, v ∈ D, ρ(x) = ∥x−x∗∥; L, M are positive nondecreasing functions on [0, 2R],
R > 0.

Furthermore,

∥F (x∗) +G(x∗)∥ ≤ η, ∥F ′(x∗) +G(x∗, x∗)∥ ≤ α;
B

R

(∫ R

0

L(u)du+

∫ 2R

0

M(u)du
)
η < 1

and Ω = Ω(x∗, r∗) = {x : ∥x − x∗∥ < r∗} ⊆ D, where r∗ is the unique positive zero of the
function q given by

q(r)=B
[(

α+

∫ r

0

L(u)du+

∫ 2r

0

M(u)du
)(∫ r

0

L(u)udu+

∫ r

0

M(u)du
)
+
(1
r

∫ r

0

L(u)du+

+
1

r

∫ 2r

0

M(u)du
)
η
]
+B

[
2α+

∫ r

0

L(u)du+

∫ 2r

0

M(u)du
][ ∫ r

0

L(u)du+

∫ 2r

0

M(u)du
]
− 1.

Then, for x0, x−1 ∈ Ω, the iterative process {xn}, n = 0, 1, . . . , generated by (2), is well
defined, remains in Ω, and converges to x∗. Moreover, the following error estimates hold for
all n ≥ 0

∥xn+1 − x∗∥ ≤ C1∥xn−1 − x∗∥+ C2∥xn − x∗∥+ C3∥xn−1 − x∗∥∥xn − x∗∥+ C4∥xn − x∗∥2,
(6)

where

g(r) = B
[
1−B

(
2α+

∫ r

0

L(u)du+

∫ 2r

0

M(u)du
)(∫ r

0

L(u)du+

∫ 2r

0

M(u)du
)]−1

;

C1 = g(r∗)
1

2r∗

∫ 2r∗

0

M(u)du η; C2 = g(r∗)
( 1

r∗

∫ r∗

0

L(u)du+
1

2r∗

∫ 2r∗

0

M(u)du
)
η;



100 S. M. SHAKHNO, R. P. IAKYMCHUK, H. P. YARMOLA

C3 = g(r∗)
(
α+

∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
) 1

r∗

∫ r∗

0

M(u)du;

C4 = g(r∗)
(
α+

∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
) 1

r∗

∫ r∗

0

L(u)udu.

Proof. According to l’Hôspital’s rule we get

lim
r→0

1

r

∫ r

0

L(u)du = lim
r→0

L(r)

1
= L(0), lim

r→0

1

r

∫ 2r

0

M(u)du = lim
r→0

2M(2r)

1
= 2M(0).

Taking into account Lemma 1 for sufficiently small η it is q(0) = B(L(0) + 2M(0))η − 1 <
0. With a sufficiently large R, the inequality q(R) > 0 holds. Taking into account the
intermediate value theorem, the function q has a positive zero on (0, R) denoted by r∗.
Moreover, this zero is the only one on (0, R).

Indeed, according to Lemma 2, the function (1
r

∫ r

0
L(u)du + 1

r

∫ 2r

0
M(u)du)η is non-

decreaising with respect to r on (0, R]. By Lemma 1, functions
∫ r

0
L(u)du,

∫ r

0
M(u)du,

and
∫ 2r

0
M(u)du are monotonically increasing on [0, R]. Also, by Lemma 3, the function∫ r

0
L(u)udu = r2( 1

r2

∫ r

0
L(u)udu) is monotonically increasing with respect to r on (0, R].

Therefore, q(r) is monotonically increasing on (0, R]. Thus, the graph of function q(r) crosses
the positive r–axis only once on (0, R).

We denote An = F ′(xn)+G(xn, xn−1). Let n = 0. By assumption, x0, x−1 ∈ Ω, we obtain
the following estimation

∥I − (AT
∗A∗)

−1AT
0A0∥ = ∥(AT

∗A∗)
−1(AT

∗A∗ − AT
0A0)∥ =

= ∥(AT
∗A∗)

−1(AT
∗ (A∗ − A0) + (AT

∗ − AT
0 )(A0 − A∗) + (AT

∗ − AT
0 )A∗)∥ ≤

≤ ∥(AT
∗A∗)

−1∥(∥AT
∗ ∥∥A∗ − A0∥+ ∥AT

∗ − AT
0 ∥∥A0 − A∗∥+ ∥AT

∗ − AT
0 ∥∥A∗∥) ≤ (7)

≤ B(α∥A∗ − A0∥+ ∥AT
∗ − AT

0 ∥∥A0 − A∗∥+ α∥AT
∗ − AT

0 ∥).

Using conditions (4) and (5), we get

∥A0 − A∗∥ = ∥(F ′(x0) +G(x0, x−1))− (F ′(x∗) +G(x∗, x∗))∥ =

= ∥F ′(x0)− F ′(x∗) +G(x0, x−1)−G(x∗, x∗)∥ ≤ (8)

≤ ∥F ′(x0)− F ′(x∗)∥+ ∥G(x0, x−1)−G(x∗, x∗)∥ ≤
∫ ρ0

0

L(u)du+

∫ ρ0+ρ−1

0

M(u)du,

where ρk = ρ(xk). Then, from the inequality (7) and the equation q(r)=0, we obtain

∥I − (AT
∗A∗)

−1AT
0A0∥ ≤ B

[
2α+

∫ ρ0

0

L(u)du+

∫ ρ0+ρ−1

0

M(u)du
]
×

×
[ ∫ ρ0

0

L(u)du+

∫ ρ0+ρ−1

0

M(u)du
]
≤

≤ B
[
2α+

∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
][ ∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
]
= (9)

= 1−B
{[

α+

∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
][ ∫ r∗

0

L(u)udu+

∫ r∗

0

M(u)du
]
+

+
1

r∗

[ ∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
]
η
}
< 1.
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Next, from (7), (8), (9), and the Banach lemma ([2]) follows that (AT
0A0)

−1 exists and

∥(AT
0A0)

−1∥ ≤ g0 = B
{
1−B

[
2α+

∫ ρ0

0

L(u)du+

∫ ρ0+ρ−1

0

M(u)du
]
×

×
[ ∫ ρ0

0

L(u)du+

∫ ρ0+ρ−1

0

M(u)du
]}−1

≤

≤ g(r∗) = B
{
1−B

[
2α+

∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
][ ∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
]}−1

.

Hence, x1 is correctly defined. Next, we will show that x1 ∈ Ω.
Using the fact AT

∗ (F (x∗)+G(x∗)) = (F ′(x∗)+G(x∗, x∗))T (F (x∗)+G(x∗)) = 0, x0, x−1 ∈ Ω
and the choice of r∗, we get the estimate as follows

∥x1 − x∗∥ = ∥x0 − x∗ − (AT
0A0)

−1[AT
0 (F (x0) +G(x0))− AT

∗ (F (x∗) +G(x∗))]∥ ≤

≤ ∥ − (AT
0A0)

−1∥ ∥ − AT
0 [A0 −

∫ 1

0

F ′(x∗ + t(x0 − x∗))dt−

−G(x0, x
∗)](x0 − x∗) + (AT

0 − AT
∗ )(F (x∗) +G(x∗))∥.

From here, considering the inequalities∥∥∥A0 −
∫ 1

0

F ′(x∗ + t(x0 − x∗))dt−G(x0, x
∗)
∥∥∥=

=
∥∥∥F ′(x0)−

∫ 1

0

F ′(x∗ + t(x0 − x∗))dt+G(x0, x−1)−G(x0, x
∗)
∥∥∥=

=
∥∥∥∫ 1

0

[F ′(x0)− F ′(x∗ + t(x0 − x∗))]dt+G(x0, x−1)−G(x0, x
∗)
∥∥∥=

=
∥∥∥∫ 1

0

[F ′(x0)− F ′(xt
0)]dt+G(x0, x−1)−G(x0, x

∗)
∥∥∥≤

≤
∫ 1

0

∫ ρ0

tρ0

L(u)dudt+

∫ ρ−1

0

M(u)du =

∫ ρ0

0

L(u)udu+

∫ ρ−1

0

M(u)du ≤

≤ 1

r2∗

∫ r∗

0

L(u)udu ρ20 +
1

r∗

∫ r∗

0

M(u)du ρ−1,

∥A0∥ ≤ ∥A∗∥+ ∥A0 − A∗∥ ≤ α+

∫ ρ0

0

L(u)du+

∫ ρ0+ρ−1

0

M(u)du,

we get

∥x1 − x∗∥ ≤ g0

{[
α+

∫ ρ0

0

L(u)du+

∫ ρ0+ρ−1

0

M(u)du
]
×

×
[ ∫ ρ0

0

L(u)udu+

∫ ρ−1

0

M(u)du
]
∥x0 − x∗∥+ η

[ ∫ ρ0

0

L(u)du+

∫ ρ0+ρ−1

0

M(u)du
]}

≤

≤ g0

{[
α+

∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
][ 1

r2∗

∫ r∗

0

L(u)uduρ20+

+
1

r∗

∫ r∗

0

M(u)du ρ−1

]
∥x0 − x∗∥+ η

[ 1
r∗

∫ r∗

0

L(u)duρ0 +
1

2r∗

∫ 2r∗

0

M(u)du(ρ0 + ρ−1)
]}

<
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< g(r∗)
{[

α+

∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
][ ∫ r∗

0

L(u)udu+

∫ r∗

0

M(u)du
]
+

+
1

r∗

[ ∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
]
η
}
r∗ = p(r∗)r∗ = r∗,

where

p(r) = g(r)
{[

α+

∫ r

0

L(u)du+

∫ 2r

0

M(u)du∗

][ ∫ r

0

L(u)udu+

+

∫ r

0

M(u)du
]
+

1

r

[ ∫ r

0

L(u)du+

∫ 2r

0

M(u)du
]
η
}
.

Therefore, x1 ∈ Ω and the estimate (6) holds for n = 0.
Let us assume that xn ∈ Ω for n = 0, 1, ..., k and the estimate (6) holds for n = 0, 1, ...,

k − 1, where k ≥1 is an integer. We shall show: xn+1 ∈ Ω, and that the estimate (6) holds
for n = k.

We define

∥I − (AT
∗A

T
∗ )

−1AT
k Ak∥ = ∥(AT

∗A∗)
−1(AT

∗A∗ − AT
k Ak)∥ =

= ∥(AT
∗A∗)

−1(AT
∗ (A∗ − Ak) + (AT

∗ − AT
k )(Ak − A∗) + (AT

∗ − AT
k )A∗)∥ ≤

≤ ∥(AT
∗A∗)

−1∥(∥AT
∗ ∥∥A∗ − Ak∥+ ∥AT

∗ − AT
k ∥∥Ak − A∗∥+ ∥AT

∗ − AT
k ∥∥A∗∥) ≤

≤ B(α∥A∗ − Ak∥+ ∥AT
∗ − AT

k ∥∥Ak − A∗∥+ α∥AT
∗ − AT

k ∥) ≤

≤ B
[
2α+

∫ ρk

0

L(u)du+

∫ ρk+ρk−1

0

M(u)du
][ ∫ ρk

0

L(u)du+

∫ ρk+ρk−1

0

M(u)du
]
≤

≤ B
[
2α+

∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
][ ∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
]
< 1.

Consequently, (AT
k Ak)

−1 exists and

∥(AT
k+1Ak+1)

−1∥ ≤ gk = B
{
1−B

[
2α+

∫ ρk

0

L(u)du+

∫ ρk+ρk−1

0

M(u)du
]
×

×
[ ∫ ρk

0

L(u)du+

∫ ρk+ρk−1

0

M(u)du
]}−1

≤ g(r∗).

Therefore, xk+1 is correctly defined and the following estimate holds

∥xk+1 − x∗∥ = ∥xk − x∗ − (AT
kAk)

−1[AT
k (F (xk) +G(xk))− AT

∗ (F (x∗) +G(x∗))]∥ ≤

≤ ∥ − (AT
kAk)

−1∥
∥∥∥−AT

k [Ak −
∫ 1

0

F ′(x∗ + t(xk − x∗))dt−

−G(xk, x∗)](xk − x∗) + (AT
k − AT

∗ )(F (x∗) +G(x∗))
∥∥∥≤

≤ ∥ − (AT
kAk)

−1∥
∥∥∥−AT

k [Ak −
∫ 1

0

F ′(x∗ + t(xk − x∗))dt−

−G(xk, x∗)](xk − x∗) + (AT
k − AT

∗ )(F (x∗) +G(x∗))
∥∥∥≤

≤ gk

{[
α+

∫ ρk

0

L(u)du+

∫ ρk+ρk−1

0

M(u)du
][ ∫ ρk

0

L(u)udu+

∫ ρk−1

0

M(u)du
]
∥xk − x∗∥+
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+η
[ ∫ ρk

0

L(u)du+

∫ ρk+ρk−1

0

M(u)du
]}

≤ g(r∗)
{[

α+

∫ r∗

0

L(u)du+

∫ 2r∗

0

M(u)du
]
×

×
[ 1

r2∗

∫ r∗

0

L(u)uduρ2k +
1

r∗

∫ r∗

0

M(u)duρk−1

]
∥xk − x∗∥+

+η
[ 1
r∗

∫ r∗

0

L(u)duρk +
1

2r∗

∫ 2r∗

0

M(u)du(ρk + ρk−1)
]}

< p(r∗)r∗ = r∗.

This proves that xk+1 ∈ Ω and the estimate (6) for n = k.
Thus, by the induction the iterative process (2) is correctly defined, xn ∈ Ω for all n ≥ 0,

and the estimate (6) holds for all n ≥ 0.
It remains to prove that xn → x∗ for n → ∞.
Let us define the functions a and b on [0, r∗] as

a(r) = g(r)
{[

α+

∫ r

0

L(u)du+

∫ 2r

0

M(u)du
][ ∫ r

0

L(u)udu+

∫ r

0

M(u)du
]
+

+
[1
r

∫ r

0

L(u)du+
1

2r

∫ 2r

0

M(u)du
]
η
}
; (10)

b(r) = g(r)
1

2r

∫ 2r

0

M(u)du η.

According to the choice of r∗, we get

a(r∗) ≥ 0, b(r∗) ≥ 0, a(r∗) + b(r∗) = 1. (11)

Using the estimate (6), the definition of the functions a, b and constants Ci (i = 1, 2, 3, 4),
we get

∥xn+1 − x∗∥ ≤ C1∥xn−1 − x∗∥+ (C2 + C3r∗ + C4r∗)∥xn − x∗∥ =

= a(r∗)∥xn − x∗∥+ b(r∗)∥xn−1 − x∗∥. (12)

According to the proof in [8], under the conditions (10)–(12), the sequence {xn} converges
to x∗ for n → ∞. This completes the proof of Theorem 1.

Corollary 1. The convergence order of the iterative process (2) for the problem (1) with
zero residual equals to 1+

√
5

2
.

If η = 0, we have the nonlinear least squares problem with zero residual in solution.
Then, the constants C1 = 0 and C2 = 0, and the estimate (6) takes the form

∥xn+1 − x∗∥ ≤ C3∥xn−1 − x∗∥ ∥xn − x∗∥+ C4∥xn − x∗∥2.

This inequality can be written as

∥xn+1 − x∗∥ ≤ (C3 + C4)∥xn−1 − x∗∥ ∥xn − x∗∥.

From here, we can write an equation for determining the convergence order as follows

t2 − t− 1 = 0.

Hence, the positive root, t∗ = 1+
√
5

2
, of the latter is the order of convergence of the iterative

process (2).
In case G(x) ≡ 0 in (1), we obtain the following consequence.
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Corollary 2. The convergence order of the iterative process (2) for the problem (1) with
zero residual is quadratic.

Indeed, if G(x) ≡ 0, then C3 = 0 and the estimate (6) takes the form

∥xn+1 − x∗∥ ≤ C4∥xn − x∗∥2,

which indicates quadratic convergence rate of process (2).
If L and M are constants, we study the convergence of the iterative process (2) in the

theorem below, which is derived from Theorem 1.

Theorem 2. Let F + G : Rp → Rm be continuous on an open convex subset D ⊂ Rp,
moreover F is a continuously differentiable, G is a continuous function on D. Suppose that
the problem (1) has a solution x∗ ∈ D, and the inverse operation (AT

∗A∗)
−1 = [(F ′(x∗) +

G(x∗, x∗))T × (F ′(x∗) +G(x∗, x∗))]−1 exists, such that ∥(AT
∗A∗)

−1∥ ≤ B.
For all x, y, u, v ∈ D, the Fréchet derivative F ′ satisfies the classical Lipschitz condition

∥F ′(x)− F ′(y)∥ ≤ L∥x− y∥

and the function G has a first order divided difference G(x, y) that satisfies

∥G(x, y)−G(u, v)∥ ≤ M(∥x− u∥+ ∥y − v∥).

Furthermore,
∥F (x∗) +G(x∗)∥ ≤ η, ∥F ′(x∗) +G(x∗, x∗)∥ ≤ α;

B(L+ 2M)η < 1

and Ω = Ω(x∗, r∗) = {x : ∥x− x∗∥ < r∗} ⊆ D, where

r∗ =
4(1−BTη)

5BTα+
√

25B2T 2α2 + 24BT 2(1−BTη)
, T = L+ 2M.

Then, for x0, x−1 ∈ Ω, the iterative process {xn}, n = 0, 1, ..., generated by (2), is well
defined, remains in Ω and converges to x∗ such that the following error estimate holds for
all n ≥ 0:

∥xn+1 − x∗∥ ≤ C1∥xn−1 − x∗∥+ C2∥xn − x∗∥+ C3∥xn−1 − x∗∥∥xn − x∗∥+ C4∥xn − x∗∥2,

where

g(r) = B[1−B(2α+ (L+ 2M)r)(L+ 2M)r]−1;

C1 = g(r∗)Mη; C2 = g(r∗)(L+M)η; C3 = g(r∗)(α+ (L+ 2M)r∗)M ;

C4 = g(r∗)(α+ (L+ 2M)r∗)
L

2
.

The proof of Theorem 2 is analogous to the proof of Theorem 1.

4. The results of numerical experiments. On several test examples we compare the
convergence rate of the combined method (2), the Gauss-Newton type’s method (3), and the
Secant type’s method for solving the nonlinear least squares problem ([8, 13])

xn+1 = xn −
(
AT

nAn

)−1

AT
n (F (xn) +G(xn)),
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An = F (xn, xn−1) +G(xn, xn−1), n = 0, 1, . . . . (13)

Testing of methods was performed on nonlinear problems with nondifferentiable operator
and both zero and non-zero residual in the solution. The classic Gauss-Newton and Newton’s
methods are inapplicable for solving such problems.

Let us denote H(x) ≡ F (x) + G(x) and h(x) = 1
2
(F (x) + G(x))T (F (x) + G(x)). Below

we list several test examples.
Example 1. p = 1, m = 1;

H(x) = x2 + |x| = 0, x∗ = 0, H(x∗) = 0.

Example 2. p = 1, m = 1;

H(x) = sinx2 + |x3| = 0, x∗ = 0, H(x∗) = 0.

Example 3. ([3, 14]) p = 2, m = 2;{
H1(x1, x2) = 3x2

1x2 + x2
2 − 1 + |x1 − 1|,

H2(x1, x2) = x4
1 + x1x

3
2 − 1 + |x2|,

(x∗
1, x

∗
2) ≈ (0.89465537, 0.32782652), h(x∗) = 0.

Example 4. p = 3, m = 4;
H1(x1, x2, x3) = x2

3(1− x2)− x1x2 + |x2 − x2
3|,

H2(x1, x2, x3) = x2
3(x

3
1 − x1)− x2

2 + |3x2
2 − x2

3 + 1|,
H3(x1, x2, x3) = 6x1x

3
2 + x2

2x
2
3 − x1x

2
2x3 + |x1 − x2 + x3|,

H4(x1, x2, x3) = |2x1 + x2 + x3/10|,
(x∗

1, x
∗
2, x

∗
3) = (−1, 2, 3), h(x∗) = 0.45 · 10−1.

Obviously, the solution x∗ = 0 is a point of nondifferentiability of the function H(x) from
Example 1 and Example 2.

Table 1 shows the results of the convergence of the investigated methods to the solution
of the equation H(x) = 0 with the accuracy ε = 10−8 for several initial approximations.
Calculations were carried out to fulfillment of the condition ∥xn+1−xn∥ ≤ ε. The additional
initial point x−1 we calculated by setting x−1 to x0 − 0.0001. In Table 1, the symbol ‘–’
indicates the lack of method’s convergence.

As can be seen from Table 1, the combined method (2) works efficiently when the solution
is at the point of nondifferentiability of the nonlinear operator.

5. Conclusions. Based on the theoretical studies and the numerical experiments, compari-
son of the obtained results, we can argue that the combined differential-difference method
(2) converges faster than the Gauss-Newton type method (3) and the Secant type. Moreover,
the method (2) has a high order of convergence (1+

√
5)/2 in case of zero residual as well as

does not require calculation of derivatives for the nondifferentiable operator. Therefore, the
proposed combined method (2) is an effective alternative for solving nonlinear least squares
problems with nondifferentiable operator.
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Table 1: Number of iterations for solving test problems.

Example The initial
Method

approximation x0 Gauss–Newton Secant Combined
type’s (3) type’s (13) method (2)

-0.01; 0.01 – 4 3
1 -1; 1 – 8 6

-10; 10 – 12 9
-0.01; 0.01 20 28 20

2 -1; 1 24 38 29
-10; 10 – 46 37
(1,0) 18 7 7

3 (3,1) 21 12 10
(0.5, 0.5) 21 15 10

(-0.5,2.3,3.5) 142 11 10
4 (-1.5,2.5,3.5) 131 10 8

(-10, 20, 30) 128 23 17
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