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ANALYTIC FUNCTIONS IN THE UNIT BALL OF BOUNDED L-INDEX:
ASYMPTOTIC AND LOCAL PROPERTIES

A. 1. Bandura, O. B. Skaskiv. Analytic functions in the unit ball of bounded L-index: asymptotic
and local properties, Mat. Stud. 48 (2017), 37-73.

We have generalized some criteria of boundedness of L-index in joint variables for analytic
functions in the unit ball, where L: B® — R is a continuous vector-function, B" is the unit
ball in C™. One of propositions gives an estimate of the coefficients of power series expansions
by a dominating homogeneous polynomial for analytic functions in the unit ball. Also we
provide growth estimates of these functions. They describe the behavior of maximum modulus
of analytic function on a skeleton in a polydisc by behavior of the function L.

Most of our results are based on polydisc exhaustion of the unit ball. Nevertheless, we have
generalized criteria of boundedness of L-index in joint variables which describe local behavior
of partial derivatives on sphere in C". The proposition uses a ball exhaustion.

An analog of Hayman’s theorem is applied to investigation of boundedness of L-index in
joint variables for analytic solutions in the unit ball of some linear higher-order systems of
PDE’s. There were found sufficient conditions providing the boundedness. Growth estimates of
analytic solutions in the unit ball are also obtained.

1. Introduction. The most important classes of analytic functions of several variables are
analytic functions in the polydisc and analytic functions in the unit ball. In our investigations,
we develop theory of functions of bounded index for these classes ([1,2,12-14]). A concept
of bounded index is very flexible to investigate properties of analytic solutions of ordinary
and partial differential equations and its systems (|7]).

The paper is a continuation of our investigations from [1,2]. There was introduced
a concept of analytic function of bounded L-index in joint variables in a ball in C". We obtai-
ned some criteria of L-index boundedness in joint variables. They describe local behavior of
partial derivatives and maximum modulus of analytic functions in the unit ball. They are
generalizations of corresponding theorems which are known for entire functions of several
variables ([9,10,29]).

In [2], we announced a possibility of application of Hayman’s theorem to linear higher-
order system of PDE’s whose coefficients are analytic functions in the unit ball. There was
presented an application scheme to a special system. Now, we consider a more general system
of PDE’s. Besides, some asymptotic estimates for the class are deduced. They describe growth
of the logarithm of the maximum modulus of an analytic function on the skeleton of a polydisc
via the behavior of some continuous vector function L: C* — R7.
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The main method of our investigations uses a polydisc exhaustion of the unit ball. It
is very convenient for the concept of bounded L-index in joint variables and functions of
several variables. Nevertheless, a ball exhaustion seems to be a more natural approach for
analytic function in the unit ball than a polydisc exhaustion. Thus, we also have established
some results about local behavior of partial derivatives for functions of this class which are
based on Cauchy’s integral formula for a ball.

There is another approach to introduce a concept of bounded index in C" and B”. It uses
a slice function. These functions are called functions of bounded L-index in direction. They
are considered in [3,5,6,8,16].

In view of results from [18,19] it is not difficult to prove that for every analytic function F’
in the unit ball with bounded multiplicities there exists a continuous function L: C* — R
such that F' is of bounded L-index in joint variables. Thus, the class of analytic function in
the unit ball of bounded L-index in joint variables is very wide.

2. Main definitions and notations. We need some standard notations. Denote
R, =[0,4c0), 0=(0,...,0) € RY, 1=(1,...,1) € RY,
1, =(0,...,0, 1 ,O,...,O)GR:{,R:(rl,...,rn)eR’}r,

~—
j—th place

z2=(z1,...,2,) €C", |2| =

n
PENT
j=1

For A = (ay,...,a,) € R", B = (by,...,b,) € R" we will use formal notations without violati-
on of the existence of these expressions AB = (aiby, -+ ,a,b,), A/B = (a1/by,...,a,/by,),
AB =abal - ab ||A| = ay + -+ + an, and the notation A < B means that a; < bj,
j € {1,...,n}; the relation A < B is defined similarly. For K = (ki,...,k,) € Z} denote
K! = k! - ... k,!. Addition, scalar multiplication, and conjugation are defined on C"
componentwise. For z € C" and w € C" we define

<Z7w> = Zlml +---+ anna

where wy, is the complex conjugate of wy. The polydisc {z € C": |z, —2)| <7j, j=1,...,n}
is denoted by D"(2°, R), its skeleton {z € C": |z; — 2J| = r;, j = 1,...,n} is denoted by
T"(2°, R), and the closed polydisc {z € C": |z; — 29| < r;, j = 1,...,n} is denoted by
D"[z° R], D" = D"(0,1), D = {z € C: |z| < 1}. The open ball {z € C": |z — 2°| < r} is
denoted by B™(2%,r), its boundary is a sphere S*(z°,r) = {z € C": |z — 2% = r}, the closed
ball {z € C": |2—2°] < r}isdenoted by B"[2",r], B" =B"(0,1),D =B' = {2 € C: |z] < 1}.

For K = (ky,...,k,) € Z and the partial derivatives of an analytic function F(z) =
F(z,...,2,) in B" we use the notation

Kl p Pt thn g

FE) = .
(= 02K 9z Ozkn
Let L(z) = (l1(2),...,1,(2)), where [;(2): B® — R} is a continuous function such that
(V2 € B"): 1;() > B/(1—|4l), j e {1,....n}, 1)

where § > \/n is a some constant.
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S. N. Strochyk, M. M. Sheremeta, V. O. Kushnir ([25,35,36]) imposed a similar condition
for a function [: D — R, and I: G — R, where G is an arbitrary domain in C.

An analytic function F': B" — C is said ( [1,2]) to be of bounded L-indezx (in joint
variables), if there exists ng € Z, such that for all z € B" and for all J € Z7

FY(z FUO(,
|J!LJ((Z))| = Hlax{g(?ff((z))l: Kezy, |K]| < no}- 2)

The least such integer ng is called the L-index in joint variables of the function F and is
denoted by N(F,L,B"). There are many papers about entire functions of several variables
of bounded index ([21,22,24,27-29]) and of bounded L-index in joint variables ([5,9-11,17]).

By Q(B™) we denote the class of functions L, satisfying (1) and the following condition

(VReRL, IR < B, je{l,....,n}): 0 <A ;(R) < Aj(R) < oo, (3)
where
Aj(R) = Z&g]gn inf { ll]j((,:o)) 2 € D" [2° R/L(2°)] } , (4)
L(2)

Ao j(R) = jgﬁn sup { NED) 2 € D" [2° R/L(2°)] } . (5)

A(R) = (Ma(R), ..., Mn(R)), Aa(R) = (A21(R), ..., Aen(R)). (6)

o~

It is not difficult to verify that the class Q(B™) can be defined as following

, 1;(2) Tk }
for every j€{1,...,n} su D2 e — wi| < — ked{l,....n}} <00,
ety s (P < e )
(7)

i. e. conditions (3) and (7) are equivalent (see a definition of a similar class for C" in [6]).

We also need the following assertions. They are generalizations of corresponding proposi-
tions for entire functions of bounded L-index in direction [3,16] and of bounded L-index in
joint variables (|10,17]) and of bounded index (|23]).

Theorem 1 ([2]). Let L € Q(B™). An analytic function F' in B™ has bounded L-index in
joint variables if and only if there exist p € Z, and c € R, such that for each z € B"

max JED@L i JIEG)
{ L) Il p“}ﬁ { L) -HKHSp}. (8)

Theorem 2 ([2|). Let L € Q", F: B® — C be an analytic function. If there exist R/,
R'eR:,0< R <R' |R'l <pandp =p(R,R") > 1 such that for every z° € C"
inequality

/!

max{|F(z)|: zeT" <zﬂ, Tz“))} <p max{|F(z)|: zeT" (20, %zo))} (9)

holds then the function F' is of bounded L-index in joint variables.
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3. Properties of power series expansion of analytic functions in the unit ball.
Let z° € B". We develop an analytic function F': B® — C in the power series written in
a diagonal form

=S e = =30 3 bz 2, (10)
k=0 k=0 ||J||=k

F(J)(ZO)
J!

where pp are homogeneous polynomials of k-th degree, b; = — - A polynomial py,, ko €
Z., is called a dominating polynomial in the power series expansion (10) on T"(z°, R) if for
every z € T"(2°, R) the next inequality holds:

Zpk z—2°

kKO

1
< —max{|bs|R’: || J|| = k°}.

\)

Recently, Theorems 3 and 4 were obtained for entire functions ([11]) and for analytic function
in a bidisc ([14]). Now we deduce these propositions for analytic functions in the unit ball.

Theorem 3. Let L € Q(B"). If an analytic function F' in B" has bounded L-index in joint
variables then there exists p € Z, that for all d € (0; %] there exists 1)(d) € (0;d) such that
for each 2° € B" and some r = r(d, 2°) € (n(d),d), k° = k°(d, 2°) < p the polynomial po is
a dominating polynomial in the series (10) on T™(2°, #,}O))

Proof. Let F' be an analytic function of bounded L-index in joint variables with N =
N(F,L,B") < 400 and ng be the L-index in joint variables at a point z° € D? i.e. ng
is the least number, for which inequality (2) holds at the point 2°. Then for each 2° € B"
o S N.

We put

bl _ [P
TLI(20)  JILY(20)°
ar, = max{a}: |J]| =k}, c=2{(N+n+Dln+ 1D+ (N+1)C v}

Let d € (0; \%] be an arbitrary number. We also denote 7, = W, pm = max{apr® : k €
Zy}, Sm=min{k: apr® = p,,} for m € Z,.

Since 2° € B" is a fixed point the inequality a}; < max{a%: |J|| < no} is valid for all
K E Z% . Then ap < ap, for all k € Z,. Hence, for all k > ng, in view of ry < 1, we have
akro < anoroo This implies sq < ng. Since cr,, = r,,_1, we obtain that for each k > Sm—1
(Tm—l < 1)

A, Tomt = ag, T eI > akrf;_lc Sm—1 — akrk cf=sm-1 > cakr’nfl. (11)
It yields that s,, < s,,_1 for all m € N. Thus, we can rewrite
o = max{axrt: k <ng}, pim = max{apr® : k < s,_1}, meN.

Let us introduce additional notations for m € N

po = max {aprg: so #k < no}, sg=min{k: k # so, arry = pg},
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wh =max{apr® : sy Ak < St ), st =min{k: k # sp, aprt =t}
We will show that there exists my € Z such that

*
Homg

1
<- (12)
fmg — €
Suppose that for all m € Z, the next inequality holds
. 1
B o 2 (13)
fm  C
If s, < Sy, (Sf, # sm in view of definition) then we have
S;kn * Sm Sm
St sy, T'm Mo Hm s "'m sy "im+1 Sm
Usy, T'm+1 = s — s st 11 s 41 T s tls = Aspm T'm+1-
S s T S S CStl=sm
Besides, for every k > s* . k # s, (i. e., k —1 > s* ) it can be deduced similarly that
Sm k k
st GspTm o kT QkT ok
st Tmt1 =~ op, > ot = k1 STy
Hence, ag: romy > aprk | for all k > s7,. Then
Smi1 < Sy, < 5, — 1 (14)

On the contrary, if s, < s}, < s,,—1, then the equality s,,11 = s, may holds. Indeed, by
definition s,,11 < s,,. It means that the specified equality is possible. But if s,,11 < s,, then
Sm+1 < Sm — 1 (they are natural numbers!). Hence, we obtain (14).
Thus, the inequalities s}, ; < s, and sy, # sp,41 imply that sy | < s,,41. As above
instead of (14) we have
Smi2 < Spiq < Sma1 — 1L =5, — L

Therefore, if for all m € Z, (13) holds, then for every m € Z, either s,,12 < Spy1 <
Sm — 1 or Spu0 < 8, — 1 holds, that is s,,10 < s, — 1, because S0 < Spaq. It follows that

Sm<Sm—2 — 1 < ... < Spopmyg) — [M/2] < so — [m/2] <ng — [m/2] < N — [m/2].

In other words, s, < 0 for m > 2N + 1, which is impossible. Therefore, there exists my <
2N + 1 such that (12) holds. We put r = r,,, n(d) = W%, p = N and kg = s,,,,- Then

for all [|J]| # ko = sm, in T"(2°, g{%;), in view (11) and (12) we obtain

1 |
[]1(z = 2°)7| = agrVl < a1l < Easmor;snoo = Eako’f’ko

Thus, for z € T"(2%, £245)

DRI ED DRCIED o W

[l J11#ko | 71l#ko
k;ﬁko
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Smg—1
ISP IE SppE e
k=0, k= Smg— 1+1

k;ﬁsmo

We will estimate two sums in (15). From (12) it follows that < 24, or max{aprk, : k #
Smos k< Smg—1} < Tmax{agrk, 1 k # Sme k< Smo-1}s 1. €. apr® < Lag,r*. Taking into
account (14), it can be deduced that

Smg—1

a g, 70
Z ayCy, ntk— it < e Z k-1 = 2 (N+1)Cn+N 1 (16)

k=0,
k;ésmo

k
akrmo—l < Hmg—1

For all £ > s,,,-1 + 1 akrfno 1 < fmg—1 holds. Then akr = —
(12) we deduce

. In view of

= ck

[e.o]

o
1
k
Z a,C} n+k— 1T < Hmo—1 Z On—i—k—l_k <

C
k:5m0—1+1 k= 3m071+1

1
< Qs o=l psmo -1 Z (k—l—l)(k—l—Z)...(k—l—n)c—k <

k:Smofl‘i‘l

Smq o0 (n)
S asmor Csmol( E xk—i—n)
C
k= +1

—Smo—l

akorko s xsmofl“r‘n‘l‘l (n)
= —0 mo—1J 00
c 11—z

=2 z=1
c c

= SmolZCjn— Smg1+n+1) ... (Smg_1 +n — j + 2)X

$3m071+1+n*]

(1 - x)n—j—l—l T

(1/C)sm071+1+n*j

* (1— /oot

g, 1 =
<——c"0 " nl(N+n+ 1)!2

_1 C -
=c Jj=0

ag,T 1 gy T
=nl | 0 =
nl(N 4+ 11— 2 ooy < (4 DN +n 4 D=, (17)

3

ko

because ¢ > 2. Hence, from (15)—(17) it follows that

ko
Z by(z — 20) S((N+1)C v+ (4 DUN +n 4+ 1)Dag,r <%ak0rk°.
C
[[711#ko

It means that the polynomial Py, is the dominating polynomial in the series (10) on skeleton
T (2°, szlo)). m

Theorem 4. Let L € Q(B"™). If there exist p € Z, d € (0;1], n € (0;d) such that for each
2% € B" and some R = (ry,...,r,) with r; = r;(d,2°) € (n,d), j € {1,...,n}, and certain
k® = k%, 2°) < p the polynomial pyo is the dominating polynomial in the series (10) on
T?(2° R/L(z°)) then the analytic in B" function F has bounded L-index in joint variables.

Proof. Suppose that there exist p € Z,, d < 1 and n € (0;d) such that for each z° € B" and
some R = (rq,...,r,) with r; = r;(d, 2°) € (n,d), 7 € {1,...,n}, and ko = ko(1, 2°) < p the
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R

polynomial P, is a dominating polynomial in the series (10) on T™(2°, e

To = MaXy<j<n Tyj- Then

)). Let us denote

N bz = [F(x) = Y bz -2 gako—“ko.

ll-711#ko I Jl1=Fko

Using Cauchy’s inequality we have [b;(z — 2°)’| = aj R’ < @ for all J € Z7, || J|| # ko,
that is for all ||J|| = k # ko

akorlgo
2
Suppose that F' is not a function of bounded L-index in joint variables. Then in view of

Theorem 1 for all p; € Z, and ¢ > 1 there exists z° € B" such that the next inequality

[FD(20)] [FEE)]
maX{WHJH:]ﬁ-}—l > cmax WHI(HSP1

apR’ < (18)

holds. We put p; = p and ¢ = <(p+1)!>n. Then for this z°(py, c)

17P+1
[EDEO 1 [FEE)]
+1
that is apq1 > % Hence, ap+1rg+1 > a'j;’;fl > ay, 7. The last inequality contradicts (18).
Therefore, F' is of bounded L-index in joint variables. O

4. Properties of Q(B"™). Here we study some properties of the auxiliary class Q(B™). Similar
propositions for C™ are established in [15].

Theorem 5. Let L(z) = (1(2),...,0,(2)), [;: B = C and i—li be continuous functions in
B", for all j, m € {1,2,...,n}. If for every j € {1,2,...,n} |l;(2)| satisfies (1) and there

exist P > 0 and ¢ > 0 such that for all z € B" and every j,m € {1,2,...,n}

c+|(2)| | Ozm

<P (19)

then L* € Q(B"), where L*(2) = (¢ + [l1(2)], ..., c+ |l.(2)]).

Proof. Clearly, the function L*(z) is positive and continuous. For given z € B", 2" € B" we
define an analytic curve ¢: [0, 1] — B

@i(T) = z? +7(2; — z?), je{1,2,...,n},

where 7 € [0,1]. It is known that for every continuously differentiable function g of real
variable 7 the inequality 4|g(7)| < |¢/(7)| holds except the points where g(r) = 0. Using
assymptions of this lemma, we establish the upper estimate of Ao (29, R) :

Az,j(%0, R) = sup {% zeD" {zo, L*iﬂ)} } _
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= sw {ep{et LG -+ [LE)N} ) =

zehn [zo

L* (ZO)

ol [ S o [ i) =

' e |9L(e(r)
iem[itf%]{GXP{/O;(:HMT»‘ Oz “”}}S

L*(20)
< sup {exp{/ ZP|zm—zm|dT}} <
ZED"[ L*( 0> =1
- Pr; P
< - J -
= nsupR {exp{zc+’lm<zo>’}}_exp< g)
z€D [ L*(zo)] m=1 m=

Hence, for all

R>0 X\ ;(R) = sup \;(2%n) <exp< ZTJ)

20eBn

Using the 1nequahty Llg(t)] > —|g'(t)] it can be proved that for every n > 0 one has
Aj(R) > exp (=23 _ r;) > 0. Therefore, L* € Q(B"). O

Particularly, if L(z) = (I4(R),...,l,(R)), R = (|z1],...,|zal|), for every j € {1,...,n}
the function /;(R) is positive continuously differentiable and |V Inl;(R)| < P for all |R| <1
then L € Q(B"), where

Jl;(R) Jl;(R)
Ii(R) = (—+—,...,——=).
w1 - (242, 20)

At first we prove the following lemma.

Lemma 1. IfL € Q(B") then for every j € {1,...,n} and for every fixed z* € B" |2;|l;(2* +
Zj]-j) — OO as |Z* + Zj1j| —1—-0.

Proof. In view of (1) we have [;(z* + z;1;) > — +oo as [z*+z1; - 1-0. O

B

1—|Z*+Zj1j|

5. Estimates of growth of analytic functions in ball. Denote
[0,27]" = [0, 27] x -+ x [0, 27].

a"'g

n—th times

For R=(r,...,m,) €RY, © = (04,...,0,) € [0,27]", A= (as,...,a,) € C" we write
Re™® = (rie, .. e, arg A = (argay, ..., argay).

By K(B") we denote the class of positive continuous functions L = (I4,...,[,), where
lj: B" — R, satisfy (1) and there exists ¢ > 1 such that for every R € R’ with |R| < 1 and
jed{l,...,n}

lj(RGieQ)

max —— =<
@1,@26[0,27‘(]” lj(Relel> -



ANALYTIC FUNCTIONS IN A UNIT BALL OF BOUNDED L-INDEX 45

If L(z) = (L(zl, - 1zal), -5 Wa(lz1], - -+, |20])) then L € K(B™). It is easy to prove that
I+l ¢ 0(D) \ K(D), but £ ) K(D)\ Q(D). Besides, if Ly, L, € K(B") then L; + Ly €

11—z 1- IZ\
K(B") and LiLy, € K(B"). For simplicity, let us to write M (F,R) = max{|F(z)|: z €

T"(0, R)}, where [R| < 1. Denote 8 = (2, ..., 7).

Theorem 6. Let L € Q(B")NK(B"), 5 > cy/n. If an analytic function F' in B" has bounded
L-index in joint variables, then

lnM(F,R)=O<min min Z/ R(j,0n,t ’G)dt> as |[R| = 1—-0, (20)

on€Sn ©€[0,27]"

where o, Is a permutation of {1,...,n}, S, is a set of all permutations of {1,...,n},

ry, if on(k) < 4,
R(j,0n,t)=(r,...,10), m.=<t, ifk=j, ke{l,...,n},
Tk, lfO'n(k) > ja

RY = (r),...,rY) is a fixed radius.
Proof. Let R >0, |R| <1, © € [0,27]" and the point z* € T"(0, R + ey ) be a such that
|F(2%)] = max q |F(z)]: z € T" OR%—L :
L(Re®)
Denote Z = W Then
SOOI R B 1.1, | .
’ ’ i+ ev/nlj ( cy/nlj(Re™®) it cv/nl;j ?Re’e) ev/nl;(Ret®)

. SR\ s Bl .
L= (e < (T ey ) <L)

Since L € K(IB%”) we have that cL( 0) = cL(Re'™8*") > L(Re™®) > 1L(2"). We consider two
skeletons T"(2°, L( ) and T™(2Y, e 0)) By Theorem 2 there exists p; = pl(%, ¢3) > 1 such
that (9) holds with R’ =1 R'=cB, ie

maX{|F(z)|: ceT (0,R+ L(Rﬁei@)>} _|F(=")| <
< max{yF(z)y: ceT (zo, %)} < max {|F(z)|: ceT (20, %) } <

<p max{\F(z)\: ceT (wﬁ)} < plmax{\F(z)\: ceT <0,R+ ﬁ) } |
(21)

The function In™ max{|F(2)|: z € T"(0, R)} is a convex function of the variables In7y, ...,
Inr, (see [30, p. 84]). Hence, the function admits a representation

In* max{|F(z)|: z € T"(0, R)} — In" max{|F(2)|: z € T"(0, R+ (r] —r;)1;)} =
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Ty

:/Aj(rl,...,rj1£t,7“j+1,...7rn)dt (22>
9
for arbitrary 0 < T? < rj, where the functions A;(ry,...,7j_1,t,7j11, ...,7,) are positive
non-decreasing in variable ¢, j € {1,... ,n}.

Using (21) we deduce

g = e { PG 2 € T (0. R+ popas ) b -

n 1
_lnmax{|F(Z)|: ceT <O,R+ m)} :
n . i_
. ;mmax{,m),: = (O’R+ - ZkL:(]}(zZ% mk) } .

1+5" (L1

L(Re®)
rj+B/(ev/nl;j(Re'®))
= 2 ¢ j 1 ll(Reie),..-y 7j—1 lj_l(Reie), 9
rj+1/1;(Ret®)
B B
Ty = | dt >
cy/nlj1(Re®)’ ' Tn cy/nl, (Ret®) -

|
1 1
> | — | A —_— T
Z n( ez@)+1> ](r1+l (R€z®) Ty 1+lj71(Rez@)’7“J

B B
Tj+1 + ol (Re) T+ c\/ﬁln(Re"G)> . (23)

By Lemma 1 the function 7;1;(Re®®) — +o0 as |R| — 1 — 0. Hence, for j € {1,...,n} and
ry >1r?

Tj+1 +

o1 o1 o =1
In{1+ — |~ v e AL — R —1-0.
H ( + lej(R@le> + 1) lej(R@le) + 1~ 2lej(Rez@)’ | |

Thus, for every j € {1,...,n} inequality (23) implies that

1 1 3
A, —_— T ., T, T — ...
(7"1 + l1<R€le) yTj—1 + l]’,1<R€z@> y Ty Ti+1 + C\/ﬁliJrl(Rel@)’ )
6] 21Inp, ™
vl (Re®) ) = £ _ "l ReT)

Let RO = (r{,...,r
consequently

»), where every 79 is chosen above. Applying (22) n-th times we obtain

Inmax{|F(z)|: z € T"(0,R)} =
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) gy —

At Ty,
= Inmax{|F(z)|: z € T"(0, R + (r] — r1)11)} +/ ! 7T2;5

= Inmax{|F(2)|: 2 € T"(0, R+ () — 7)1y + (r) — r5)12) }+
+/T1 A1(7577“2;---a7“n)dt+/w Ag(r?,t,rg...,rn)dt:

? 9 t
0 7"1,...,T?_l,t,TjJrl,...,rn)
=Inmax{|F(z)|: z € T"(0, R") }+Z t dt <
< lnmax{|F( )| 2z € T"(0,R")}+
21 .
np Z/ 7,1 191’”_’7,;) 1629] 1 tew] 7”+1€ 0+ N rnew")dtg

< Inmax{|F(z)|: z € T*(0, R%)}+

21np1 ,
E (riet ...,rj et e ps e e dt <

21n .
<(1+of L Z/ (e 291,...,7“? 01 e g et et dt.

The function In max{|F (2)|: z € T"(0, R)} is independent of ©. Thus, the following estimate

Inmax{|F(z)|: z € T"(0,R)} =
19 0 160, 160, 10 0,
<@€H312I}T]nz/ (% L€ e e e )dt) ,

holds as |R| — 1—0. Obviously, the similar equality can be proved for arbitrary permutation
o, of the set {1,2,...,n}. Thus, estimate (20) holds. Theorem 6 is proved. ]

Corollary 1. If L € Q(B") N K(B"), . rfniQn] 1;(Re'®) is non-decreasing in each variable 1y,
€10,27|™

k,j e {l,...,n}, k # j, analytic function F' in B" has bounded L-index in joint variables
then

Inmax{|F(2)|: z € T"(0,R)} = O < min] Z/ ] lj(R(j)eie)dt>
; = /o

as |[R| = 1—0, where RY) = (rq,...,1j 1,t,7j11, -, Tn).
Note that Theorem 6 is new even for n = 1 (see Theorem 3.3 in [35]) because we replace

the condition [ = I(|z|) by the condition [ € K(ID), i.e. there exists ¢ > 0 such that for every

€(0,1) max Z(TQZZT) < c. Particularly, the following proposition is valid.
01,62€[0,2x] 1(re’L)

Corollary 2. Ifl € Q N K and an analytic function f in D has bounded [-index then
0€l0,2m

Inmax{|f(2)|: |z|=r} =0 ( min}/rl(tei@)dt) asr —1—0.
0

Let us denote ™ = max{a, 0}, u;(t) = uj(t R, @) 1;(%e®), where a € R, t € Ry,
je{l,...,n}, r* =maxicj<,7; # 0 and £
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Theorem 7. Let L(Re®) be a positive continuously differentiable function in each variable
e, k€ {1,...,n}, |R| < 1, © € [0,27]". If the function L satisfies (1) and an analytic
function F' in B™ has bounded L-index N = N(F,L) in joint variables then for every © €
0, 27]" and for every R € R}, |R| < 1, and S € Z

: < < —_— <
IDHIaX{—S| S( ’L@) ||S|| N lnﬂlaX S'LS( ) HSH N —|—

" 7 T e " (= (7))
+/0 (glaé}z(v{jle(kj+l>lj<FRe )}ﬂﬁ%{;W}) dr. (24)

Proof. Let R € R\ {0}, © € [0,27]". Denote a; = £, j € {1,...,n} and A = (o, ..., an).
We consider the function

[FS)(Ate®)]
t) = oy - <N 2
ot0) = max { LS s < v 25)
where At = (aut, ..., ant), Ate'® = (aite® ... a,te).

|F(5) (Ate’®))|
KILK (Atei©)

the zero set of the function |F(%)(Ate™®)|, the function ¢(t) is a continuously differentiable
function on |0, | R|) except, perhaps, for a countable set of points.

Since the function is Contlnuously differentiable by real ¢t € [0,400), outside

Therefore, using the inequality <|g(r)| < |¢/(r)| which holds except for the points r = ¢
such that g(t) = 0, we deduce

(S) i©
i |F (Ate ‘ )| _ 1 |F(S (At€z®)|
dt \ S'LS(Ate™®) SILS(Atei®) dt

d 1 1
— <
dt S!LS(Ateie) = S!LS(Ateie)

+|F(S) (Ate™©)

Z F(S-‘rl])(AteZ@)a]eZ@] _
7j=1

‘ |F S+1])<At€’b@)‘

Iy e
(ki +1);(Ate’
S‘LS Atele ]Z: AteZ@ = (S+1,) L5, (Atez@)aﬂ(kﬂ+ )i (Ate™ i
|F S) | +
2
S 31 Z e (26)
For absolutely continuous functions hy, he, ..., hy and h(x) := max{h;(z): 1 < j < k},

W (z) < max{hi(r): 1 < j < k}, x € [a,b] (see [35, Lemma 4.1, p. 81]). The function g is
absolutely continuous, therefore, from (26) it follows that

J(t) < max{dt (%) ISl < N} <

" (s + DI(Ate’®)[FE(Ate®)| | [FO)(Ater®)| ¢ s5(=uj(t)*
< Jj\°j J A <
EE {Z (K + 1;)ILE+L (Ate™®) * SILS (Ate'®) Z AteZ@ -

<9 (”g}&’; {Z aj(s; + 1);(Ate™) } + ISIEN {Z Atez(;) }) = g(t)(B(t) + (1)),
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where

+
_ (S
= ”gﬁagj(v {Z oz] s; + 1 Ate )} HSH<N {Z At@l@ } .

Thus, 4 Ing(t) < B(t) +~(t) and

9(t) < g(0) exp / (B(r) +~(r))dr, (27)

because ¢g(0) # 0. But r*A = R. Substituting ¢ = 7* in (27) and taking into account (25),
we deduce

|7 (Reze)\ [FE(0)]

: " sj(—uy(r)*
1)1;(A S\ 7))
+/0 (ngﬁ%v {Z (s + Dl{Are’ )}+||I§T|85v {jzl L{Are®y ()

i.e. (24) is proved. O

Theorem 8. Let L(Re®) be a positive continuously differentiable function in each variable
e, k€ {1,...,n}, |R| < 1, © € [0,2n]". If the function L satisfies (1) and an analytic
function F' in B" has bounded L-index N = N(F,L) in joint variables and there exists
C > 0 such that the function L satisfies inequalities

(=(u;(t, R, ©)))"

Sup max max max . , <C 28
|R|<1 t€[0,r*] ©€[0,27]n 1<j<n :-11?(7%1%@@@) ’ (28)

then
T Inmax{|F(z): z€ T*(0,R)}
|R|—1-0 10
. @en[%)%x]nfo (R,L(TRe™®))dr

<(C+1)N +1. (29)

Proof. By Lemma 3 if L satisfies (1) then

1
max / (R,L(TRe®))dr — +oo as |[R| — 1 —0. (30)
ec0,27]™ Jq
Denote 3(t) = > a;lj(Ate™®). If, in addition, (28) holds then for some S*, ||S*|| < N
and S, S| < N,
noosuot .
V() =1 e (—uj(t)*
— = =3 : — <Y si——"—— <3 57.C<NC,
B(t) Zj:1 a;li(Ate®) ]Zl ]ozjljg-(Ate’@) JZ1 J
Blt) Dy a8+ 1)l (Ate’®) >y il (Ate')

3 n : =1+ < -~ <1+ 5 <1+N.
B(t) Zj:l ajlj(Ateze) Zj:l ajlj(Atele) Z J

But [F(Ate™)] < g(t) < g(0) exp fot(ﬁ(T) + v(7))dr and r*A = R. Putting ¢t = r* and
taking into account (30), we obtain

J=1

1 F(2): T"(0,R)} =1 F(Re®)| <1 ) <
nmax{|F(z): z€ T"(0, R)} neerr&g;}nl (Re™)| neé%a;]ng(r)_
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<lng(0)+ max / (B(r) +~(7))dr < Ing(0) + (NC + N +1) max / B(r)dr

@G[O,Zﬂ]” 0 @G[O 27!']” 0

=Ing(0)+ (NC+ N +1) max / Zaj (Are'®

0€l0,2w|”

=Ing(0)+ (NC+ N +1) max / erl Re’@)d =

0¢0,27|"

@e[o 2m]n

= 1119(0) + (NC + N +1) max / erlj(TReiG)dT
=1

Thus, we conclude that (29) holds. O

Theorem 9. Let L(Re®) be a positive continuously differentiable function in each variable
e, k € {1,...,n}, |R| < 1, © € [0,27]". If the function L satisfies (1) and an analytic
function F' in B" has bounded L-index N = N(F,L) in joint variables and

(= (uy(t, R, ©))j—pe )"/ (155 (Re™®)) = 0 (31)
uniformly in all © € [0,27]", j € {1,...,n}, as |R| = 1 — 0 then
T Inmax{|F(z): z€ T"(0,R)}
|R=1-0 max, fo (R,L (TRe®))dr

o¢c(0,27

< N+1. (32)

Estimate (32) can be deduced by analogy to the proof of Theorem 8.
If L(z) = L(R) then (31) can be written in a simplified form.

Corollary 3. Let L(R) be a positive continuously differentiable function in each variable
ri, k € {1,...,n}, |R| < 1. If the function L satisfies (1) and an analytic function F' in B"
has bounded L-index N = N(F,L) in joint variables and for every j € {1,...,n}

(R, VI;(R))

—0,as|R|—1—-0
ril3(R)

then

T Inmax{|F(z)|: z€ T"(0,R)}

T <N +1,
|R|—+1-0 fo (R,L(7R))dr

where VI;(R) = (811(3)7 o alj(R)).

ory Tn

Our main result in this section is the following

Theorem 10. Let L(R) = (I;(R), ..., l,(R)), [;(R) be a positive continuously differentiable
non-decreasing function in each variable ry, k € {1,...,n}, |R| < 1. If the function L
satisfies (1) and an analytic function F' in B" has bounded L-index N = N(F,L) in joint
variables then

o lnmax{|f’(z)|: 2e€T"(0,R)} < N4l
|R|—1-0 Jo (R, L(TR))dr
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This statement is a consequence of Theorem 9, which is obtained for a more general
function L.
We will write u(r,0) = I(re®®). Theorem 7 implies the following proposition for n = 1.

Corollary 4. Let I(re'®) be a positive continuously differentiable function in variable r €
[0,1) for every 6 € [0,2n]. If an analytic function f in D has bounded l-index N = N(f,)

and lim max % = (C >0 then
r—1-00€[0,27] re
o nmax{|f(z): |o| =7}

r>1-0  max [l (re?)dr
0€[0,2m]

<(C+1)N+1. (33)

Estimate (32) is sharp. It is easy to check for these functions F(z) = exp{m},

l1<21,22> = WM, l2(21,22) = m Hence, we have N(F,L,Bn) = 0 and

Inmax{|F(z)|: z € T*(0,R)} = 7—

(I=r1)(1-r2)"
6. Bounded L-index in joint variables in a bounded domain. By G we denote the

closure of a domain G. The following result is generalization of one-dimensional propositions
from |26, 35].

Theorem 11. Let F(z) be an analytic function in B", G be a bounded domain in B",
d=inf,.z(1—|2]) > 0 and B > \/n. If for every j € {1,...,n} [;: B" — Ry is a continuous
function satisfying l;(z) > % for all z € B then there exists m € Z, such that for all z € G
and J = (jl,jg,...,jn) EZ”

|FD ()] [ (2)]
<m ——: KeZ, |K|< 34
J'LJ(Z) ax K'LK(Z) € + || || >me, ( )
where L(z) = (I1(2),...,1.(2)).
Proof. If F(z) = 0 then (34) is obvious. Let F(z) # 0. For every fixed 2° € G |J,LJ zO))| is the
modulus of a coefficient of the power series expansion of the function F(z), 2 € T"(z2°, LI(D;OO)),

where |Ro| = v/n. Since F(z) is analytic, for every z° € G |§(Ij;(é?)))|
there exists mg = m(2°), for which inequality (34) holds.
Assume on the contrary, that the set of mg is not uniformly bounded in 2° : sup,o.g mo =

+00. Hence, for every m € Z, there exist z, € G and J™ € 7y

— 0 as ||J|| = oo, i. e.

’F(Jm (=) ‘FK)(Zm)‘
T (~ ) — KeZ, |[K||<Z )
T (2~ KILE (2m) ez, [|K| <m (35)

Since 2™ € G, there exists a subsequence 2™ — 2/ € G as m — +o00. By Cauchy’s integral
formula for any J € Z;

FUGEY 1 F(z) s
JU o (2m)n / (z — zO)J“d '

2€T"(29,R)

We rewrite (35) in the form

[FE ™) n
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SgyEE | el < (POl 66

zET"(zO,L(fm))

where G = Uz*EéDn[Z*’L(z ], |IR| < B. We choose R such that r; > 11i. e. |R| > /n.
Taking the limit in (36) as m — oo we deduce

FE) (5 1
| ()] < lim max{|F(2)|: z € Gg} = 0.

VKGZ?_ m_m_) RJm

as m — +oo. Thus, all partial derivatives of the function F" at point 2’ equals 0. By uniqueness
theorem F(z) = 0. It is impossible. O]

Remark 1. A similar proposition for analytic functions in B" of bounded L-index in a
direction b € C™\ {0} is valid under the additional assumption Vz € G F(z+tb) # 0, where
t € C (see [4,5]).

7. Exhaustion of unit ball by balls of lesser radii. Denote ((z) = minj<;<,[;(z),
L(z) = maxj<j<, [j(z). Obviously, that ((z) < L(z).
By Q'(B™) we denote the class of functions L, which satisfy the condition

(Vrel0,B8], je{l,...,n}): 0 <A (r) < A j(r) < oo, (37)
where
Ay(r) = inf mf{ l(< )> 2 €B" [ r/0(2")] } (38)
Ao j(r) = jggﬂ Sup{ J((ZZO)) zeB" [ r/l(z )]} (39)
Ai(r) = (Aaa(r), -5 An(r), Aa(r) = (A2 (7)o Ao (7). (40)
These denotations of A;;(7), A2 (1), A1(r), Aa(r) are valid in this section only. In other

sections their meanings are defined in (4)—(5).

The following theorem is basic in the theory of functions of bounded index. It was
necessary to prove more efficient criteria of index boundedness which describe a behavior of
maximum modulus on a disc or a behavior of logarithmic derivative (see [3,5,25,29,32,35]).
All cited papers used a polydisc exhaustion in C" or a disc exhaustion in C.

Theorem 12. Let L € Q'(B"). In order that an analytic function F' in B" be of bounded
L-index in joint variables it is necessary that for each r € (0, 3] there exist ng € Z, po > 0
such that for every 2° € B" there exists K° € Z, |K°|| < ny, satisfying

[FUDR)

I I

max Mi K| < no, z€B" [ZO 7"/£<ZO)} < Do
KILK(z) - ’ B

and it is sufficient that for each r € (0, 3] there exist ng € Z., po > 0 such that for every
2" € B" there exists K° € Z7, || K°|| < n, satisfying

|F5) ()] n | FE)(29))]
max{—: |K|| <ng, z€B [zojr/f(zo)ﬂ < pom.

KILE(2) (42)
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Proof. Let F be of bounded L-index in joint variables with N = N(F,L,B") < co. For every
r € (0, 5] we put

q=q(r) = [(N+17"\/_H A ()N (e ()M + 1,

where [z] is integer part of the real number z, i.e. the floor function. For p € {0,...,q} and
2% € B™ we denote

F(K)
S,(2%,7) :max{ﬂ: |K|| < N,z e B" |:ZO, or }},
q

KILK(z) L(29)
x7 0 o |F(K)(z)| . < n 0 pr
S (2 ,r)—max{—K!LK(ZO). |IK|| < N,zeB" |z L@
Using (4) and B" [ , é( } Cc B" [ ’[,(20)]’ we have
0,3\ _ [FUO(2)| LR (2°) ) < n| 0 Pr <
Sp(27,7) —nlaX{K|LK(2) LE(0) |K|| <N,z eB"|z L@ S
THE) pr -
< Q* 0 J . B 0 *
_Sp(z,r)max{‘ 7 2) z € [Z’qﬁ(zo)} S z T H)\lj
j=1 7 7j=1

and, using (5), we obtain

o JIFOELEE) T e
Sy(27,r) _maX{K!LK(z)LK(ZO)' |K|| < N,zeB" |z el

) , d
<max {U(Ag(r))[(: |K|| <N,z eB" {zo, p_} } < S,(2% ) H()\Q,j(r))N. (43)

K'LK(Z) qﬁ(zo) j=1
Let K®) with [|[K®|| < N and %) € B" [ T E] ] be such that
. [FE) ()]
Su(2r) = KOILET (20)" (44)
Since by the maximum principle 2 € S, (2°, %), we have z(P) % 29 We choose
—1
7P = 2 + pT(z](-p) —2)), je{l,...,n}.
Then we have
-1 -1 opr
) _ 0P S0 o P2 P 45
B0 - ) = Bt a1 - P (45)
-1 1 1 pr r
20 _ L0 =0 p L) _ 0y _ ) = 21,0 _ )| = = = ) 46
| = 04 B0 58) 50 = 0 -0 = B (i)
From (45) we obtain 2 € B" [ ' ;(;33“] and

(K@) (3(p)
" [ ()]
Spfl(z ,T) > K(p)!LK(M(Z’O)'
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From (44) it follows that

(K@) ()| = | ED) (3w)
500 N ax (0 F ()| = |F ")
0<55(2%r) =5, 4(2,r) < K@®ILE® (;0)

1 d K®)
—K(P)!LK<p)(z0)/0 p F( )(%p) +t(2 () _ p)))]dt <

1 n
- (p) _ "’(P) (K(P)+1,) A,( ) ( ) B /v( )
= K@ILE® (20) /0 Z’Zj Zj ”F D (2P zp))‘dt

! ®) .
WZ|Z(I7) A{prKpH])(%p)—irt(() 7))

: (47)
where 0 < t* < 1,20 + 1% (2 — 20)) € B"(2, o). For 2 € B"(2°, fiy) and J € Z1,
|J]] < N +1 we have
|F)(2)|L7(2) J [FU(2)]
< (A K| <N
T () = Mol max oy IR

< T10asr) ¥ (hay )~ max{ e i < N} <

< [T Oaa ) ()N 55(% ).

Jj=1

From (47) and (46) we obtain

0< S;(ZO7T) - S*_I(ZO,T) <

< [T )M s ()7 S50 r) Z(ky’) + 11202 — 2P
ﬁ()‘ZJ(T))NH(/\u( )~ NS*(Z r) (N +1) Zl (p) ”{,p)| <

< TTas ) ¥ )N (N + 1) (2, RIVRL ()| — 20)]

Gy (M) s (1) Nf(Nj)” 5 (20

This inequality implies Sy(2°,7) < 25} 1(2°,7), and in view of inequalities (43) and (44) we
have

1 .
7R) < §Sp(Z07R>'

Sp(2%,1) < 2H(>\1,j( NS (%) < QH()‘LJ( )N (A (1) Sy (2°,7)
Therefore,

|1 (2)] ni|.0 PT 0
_— < — <
maX{K!LK(z) |K|| < N,zeB" |z, Sq(27,1r) <
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ﬁ“ T ey (M) S () (2H Mg ()™ )™ ) ol 1) =
- (2ﬁ<xl,j<r>>N<A2,j<r>>N) mx{% i < v} (48)

From (48) we obtain inequality (41) with po = (2[[;_; (M1, (1) N (Ag;(r))V)? and
some K° with || K°|| < N. The necessity of condition (41) is proved.

Now we prove the sufficiency. Suppose that for every r € (0, 5] there exist ny € Z,
po > 1 such that for all zy € B" and some K° € Z", | K°|| < ng, the inequality (42) holds.

We write Cauchy’s formula for a ball (see [37, p. 109] or [31, p. 349]) as following V2 € B"
VK € Z" VS € Ty Vz € B"(2°,r /0(2°))

L 1SI = 1)! € — E—20)SFE) (¢
F(K+S)(Z): (n (nH_Hl)l ) / (1€ _‘ 20‘22 K{z —ZO> — z0(>)>"+I|SI| do(8),
§™(20,r/€(29))

where do(£) is the normalized surface measure on S,,, so that ¢(S,(0,1)) = 1. Put z = 2°:

+[1S] = 1)! E—20)SFE) (¢
pls) oy _ (0 ( n||_||1)! ) / |<§_;|>2(n+nsng_3da<g> (49)
Sn(20,r/£(20))
Therefore, applying (42), we have

+ 18] - 1)! £ — 20| | FE) (¢

| U9 (,0)] < (n (n||_||1)! ) / |(’£_20)’2(|7|7b+||5||)<—1>|d0(§) <

Sn(20,r/£(29))
N 2TED (|| - 1)! |(€—2°)5]| F)(¢)| KILF (¢)
S( - ) oo/ KILE(E) 4o <
Sn(20,r/£(29))
L)\ (- )S) - 1)! (€ = 2 1P U 0| KILF(2)
< Po ( r ) (n—1)! / KOILE?(20) do(€) <

§7(20,r/£(2°))

<e(20))2<"+5>—1 (n+ 5] = 1) FED O KT, A5 (r)LE(2°)
(n—1)! KOILEY(20)

X

% / (€ = 295|do(¢) <
Sn(20,1/£(20))
() (4 ] — DHED O T, A3y (LK (29)
< po ( ) (n—1)! KOILK(29)
|(§_ZO>S| 5—20
Xgn( 0 [Z( 0) (T/ﬁ(zo))IISII do (T/g(zo)) <

0NN (IS = 1) EFED (0) KT, A5 ()L (2°)
Sp“( ; ) (n— 1) RO (20)

X

X
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x(/|éWdQ=WOC@%)S(W+%ﬂ_U&

r (n—1)!

s7(0,1)

N U (20) K TGy A8 (r) L5 (2°) T(n) TT5=, Dlsi/2 + 1)
KOILK?(20) I(n+151/2)

This implies

FUE)
(K + S)lLK—I—S(ZO)

[FEOE)] () BT A5y () (4 1S = DT T(si/2+ 1)
= KO!LKO<zo>pO( r ) & + 5T+ STALS ) =
IFEOE0)] KT AR (r) (4 (1S = DT, Dsy/2+ 1)

= KOLR(20) " (K + S)IT(n + [S]/2)r¥T

(51)

We choose r > 1. Since ||K|| < ng the quantity poK![[;_; A3%(R) does not depend of S.
Then there exists n; such that

pOK' HJ 1 QJ(T)
rlISl

<1 for all ||S]| > n. (52)

ﬂig,?;g:n 51” /;J;/HQ;HFI) is more difficult as ||S|| — +oo. Using the

Stirling formula I'(m + 1) = v2rm (2)™ (1 + 1), where § = 6(m) € [0, 1], we obtain

The asymptotic behavior of

(n+ 18] = DI, T'(s;/2+ 1) A ls) =1 [[ Dis;/2+1)
(K 4+ S)'T'(n +||S]|/2)rISI = SIT(n 4+ ||S]|/2)rISI
V2r(n+ || S| — 1) ynrisi- T, /27, /2557
= X
[T, /27s;(2) /2 (n + S]] /2 = ><%w“sw LIS

O(n+|S(|-1) 0(s;/2)
(L strps) Tl (U + 35075

0(n+[5]/2) 0(si)y
(1 + wagrpsiz) I (1 + T35, )

Denoting

O(n+]S|-1) n 0(s;/2)
(1+ 2(n+[[S— 1)) Hj (14 55 /2)
O(n+1S[l/2) 0(s;)
(1+W)H (14 12s; Tor)
and simplifying the previous inequality we deduce
(n+ IS = D= Tsi/2+ 1)
(K + S0 + [S]/2)r T

o(t=n)/2o=II8l/2 / 1 — 1 4 1S \" 1+[|S]/2
rlsl (n—l—i—HSH/2) S(n =1+ IS

o(S) =

<0O(9)

no, o(n—1+[1S1)/2,-1ISIl/2 noo
ei/2 _ Isi/2 TT(C ysi/2 —
X H1 25, < O(5) e (n—1+1S]) H(Zs-) =
J:

j=1 "~
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ISI . n=1

9(n—1)/2 n—1\n1"2 "1
:@5____1+__J NRTEIER y
S g (1+ 50 i1 ]

j=15j
- 1 2 S 2\T]é|\
< O(8)(2¢) "V (;H(”S—”)
. J

ISl
> , 8j — 00. (53)

7j=1
Denote z; = % € (1,400), x = (21,...,2,). Obviously, O(S) — 1 as s; = 00, j €
{1,...,n}. Then (53) implies a constrained optimization problem

H(z) := Ha:;/mj) — max
j=1

1

subject to E — =1, z; € (1,400). (54)
x‘.

j=1"/

If this problem has a solution, then H(z) is not greater than some H* and we choose r > H*
in (53).

Let us introduce a Lagrange multiplier A and study the Lagrange function £(z, ) defined
by

A necessary condition for optimality in constrained problems yields that

oL 1—Inz; . 1

- 2
Oz, 25 P 7
or
L-lnz; 77 ,0/Cm0
Lo e,
k=1
Hence, z; = exp(1 —2X/[],_, xi/(zx’“)), ie. xy =x9 = ... = x,. Constraint (54) implies that

=1 z; x1

S =2 =1orz;=nforevery j € {l,...,n}. Then H(x) < H?Zlnl/@”) =./n.
5

We choose > /n. For this 7 we have  []7_, (Hsﬂl) T < 1. Tn view of (53) it means
J
that there exist ny such that

(n+ 18] = )ITT, Ds;/2 + 1)
(K + S)T(n + [ 5]/2)r1S

(55)

for all ||.S|| > na.
The asymptotic behavior of right part (51) in other cases S can be investigated similarly.
Taking into account (51), (52) and (55) we have that for all ||S|| > ny + ng

[P (20)] <IF(KO)(ZON
(K + S)ILSE(20) = KOLK(20)
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This means that for every J € Z,

FOEO) { [FUO(20)

JIL7(20) RILE(0y I mo+m+ "2}

where ng, ny, no are independent of zy. Therefore, the function F' has bounded L-index in
joint variables with N(F,L,B™) < ng + n; + nao. ]

If we impose additional constraint by the function L then Theorem 12 implies the followi-
ng criterion

Theorem 13. Let L € ()'(B") be such that sup,cgn %

in B" has bounded L-index in joint variables if and only if for each r € (0, 5] there exist
ng € Zy, po > 0 such that for every z° € B" there exists K° € Z", || K°|| < ng, such that
inequality (42) holds.

= C < 00. An analytic function F

Proof. Sufficiency is proved in Theorem 12. As for necessity we choose ¢ = q(R) = [2(N +
DO T (As(1) ™ (Ao (1) +1]+ 1 and replace £(2°) by £(2°) in the proof of Theorem 12.
No other changes. O

Theorem 14. Let L € @'(B"). In order that an analytic function F' in B™ be of bounded
L-index in joint variables it is necessary that for every r € (0,3] Ing € Z, Ip > 1 V2" € B"
JK° € 71, | K°|| < ng, and

max {|F(K0)(z)|: 2 € B" [zﬂ,r/ﬁ(zO)}} < p|FED (0] (56)

and it is sufficient that for every r € (0, 3]

g €Zy Ip>1V2"€B” Vje{l,...,n} 3K] =(0,...,0, K ,0,...,0)

j-th place

such that k;-) < ngy and
max {\F<K§~’>(z)\: zeB" [zﬂ,r/z(z())]} < p|FED(0)| V5 € {1,... n}, (57)

Proof. Proof of Theorem 12 implies that the inequality (41) is true for some K°. Therefore,
we have

o |FE(20 FE (4 n .0 0
. | LKO((ZO))| > max{[’(oTKg(i’): c e B [0, r/L(x )}} _

FE (2 LE°(20 0 0
= max{‘ K0!< ) LKO(ZO)<LK)°(Z) cze B [0 r/L(z )}} >

F(KE®) > 7.171 )‘2,]’ r)) "o o 0
Zmax{’ KO!( )’HJL<K0(Z(O))) 1z e B [0 r/L(z )}}

This inequality implies

o TT7y (Ng i ()70 | U0 (50 FE) (2 00 0
poll; I((O! (r)) ILKO((ZO))I Emax{f’(mTo((z)ol): 2 e B [2°r/L(2 )]}. (58)
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From (58) we obtain inequality (56) with p = po [[;_, (A2,;())". The necessity of condition
(56) is proved.

Now we prove the sufficiency of (57). Suppose that for every r € (0,5] Ing € Z,, p > 1
such that Vzo € B" and some K € Z7} with kY < ng the inequality (57) holds.

dz.

F(K9+S)(ZO) 1 / F(Kg)( )

z
S| (2mi)? (z — 20)S+e
T™(2°,R/L(29))

In view of (49) we write Cauchy’s formula as following Vz° € B" VS € Z"

(K?9)
(k015) 0y _ (A IS =1 (€ — 20 F™(E)
F (27) = (n—1) € — 20[2(n+TST—1 do(§)
S™(2%,r/(z°))

As in (50), this yields
PO (20)] <

L (n+ S|~ 1) (WO))MSIH max{| O (2)]: 2 € B" [0, r/0(=)] } ¢

(n—1)! r
(n 4 [IS]| — 1)t [0\
(n—1)! (7“) -

x / (E=)5do(e) <
Sn(29,7/€(29))

— S -2
xmax{|FE) (2)|: z € B [2%,7/0(z")]} / (555(,20)))”!” do <r€/€(z0)> =
§™(20,r/€(29))

o Ry S0y 151l 0
<! wflll)! . (g(r)) max{|[FED(2)]: 2 € B [2%,r/0(=")] } x

x / 5|0 (€) = (n+ S| = 1)! (g(ZO))HSn )

(n—1)! r

§7(0,1)
L) ITj D(si/2+ 1)

xmax{|[ 5 ()] z € B [, r/¢(=")]} I'(n+5]1/2)

Now we put r = /5 and use (57)

[P+ (0] < (6(20)) I+ 1S = DT Tlsi /2 + 1)

B I'(n+15]//2)

x max{|F5)(2)]: z € B" [2°, 8/0(:°)]} <

0N\ (n+ (18] = DITTE, sy /2 + 1)
Sp( 5 ) T+ 1151/2)

Therefore (59) implies for all j € {1,...,n} and kY < ng

| (29)]. (59)

PO K 18] - DT Tsy/2+ 1) [0y
LK?+S(ZO)(KJ()+S)! - BHS”(KJQ—G—S)!F(TL—F I1511/2) LKJQ(ZO)KJQ!

IN
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(S = DT Dlsi/2 4+ 1) |FED(:0)
SPTTTREISIT e+ [S1/2) LR 0K

In view of (55) there exists n; such that for all ||S|| > n,

(n+ 18I = DT Tlsi/2+ 1)
BISISIC(n + [|S]1/2) -

Obviously, there exists ng such that for all ||[S|| > n gl’ﬁg” < 1. Consequently, we have

FUEG+9)(,0 FU)
LKO|+S( 0)([2015) £K°( 3 )o’ for all [[5]] 2 n1 +
J ya .
J

i.e. N(F,L,B") < ng+ ny + no. n

Lemma 2. Let Ly, Ly be positive continuous functions in B" and for every z € B" L;(z) <
Ls(2). If an analytic function F' in B" has bounded Li-index in joint variables then F' is of
bounded Ls-index in joint variables. If, in addition, for every z € B" Ly(z) < {5(z) then
N(F,Ly,B") < N(F,L;,B").

Proof. Let N(F,Ly,B") = ny. Using (2) we deduce

?) [F(2)] n
max{m: K€Z+, ||K||§TL() S

- K\ |FE)(,
< O [BEEEEL, ez ) <} <

L3 (2) KLy (2)
Li(2)\"™" [P n
< (fo) el Ko WS} )

Since L;(2z) < Lo(2) it means that for all ||J|| > nng

[FU(2)| [F(2)]
L —: KeZ", |IK| < .
TL() ="\ gILE() " K €24 IRl =no

Thus, F' has bounded Ls-index in joint variables.
If, in addition, for every z € B™ £1(z) < ¢5(z) then for all ||.J|| > ng (60) yields

F) lJ-K|| F(K)
T < IKli<n ( (Z)) e {ﬂ: Kezl, K| =< no} :
no

J!Lg(z) (2) KL (2)

|F(K)
< maX{K'LK : KeZl, |K| Sng}
").

and N(F LQ,B”) < N(F Ll, 0

Denote L(z) = (I1(2),...,1.(2)). The notation L = L means that there exist 01 =
(91’]', R ,Glm) < RZLF, @2 = (027]', R 792,n) < Ri such that Vz € B" Gl,jlj( ) S l]( ) S 927]'[3‘( )
for each j € {1,...,n}.
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Theorem 15. Let L € Q'(B"), L < L, SUD,cpn % = C < oo, minj<jc, 01 > ‘/TE An
analytic function F in B" has bounded L-index in joint variables if and only if F' has bounded
L-index.

Proof. 1t is easy to prove that if L € @'(B") and L = L then L € Q'(B™) with g =
Bmin;<j<p, 61; > +/n instead of § in (1).
Let N(F,L,B") = ny < +00. Then by Theorem 12 for every 7 € (0, #) there exists p > 1

such that for each z° € B" and some K° with ||K°|| < 7, the inequality (41) holds with L
and 7 instead of L and r. Hence,

pIFEIE) b O [FEDE0) b [FUOE)
KO LE°(20) — KO ©FK'LK°(x0) ~ KOlQKLK(,0)

1 |FE)(2))| ~ )
> BN 0K < 7o, 2 € B |20, 7/L >
> @50 maX{K!LK(Z) | K| < ng, 2 [2 T/ (z)} >

>

1 Kp®) - -
> max{M: | K| < ng, 2z € B [20’1r<rl-i§ @17jr/£(z)]} >
SJsn

— oK’ KILK(2)
min {6} %
0<]| K [|<n FE)(z _ "
ZT;)(O X{’[(TK((Z))‘Z”KHSTLO,ZEB [z, mln @1JT/£ ]}
min {OF} K
0] K ko |FE)(2)] w0 rm1n1< <n @1
ZTHIaX{m ||K||<n0,ZEB ] \J
In view of Theorem 12, we obtain that function F' has bounded L-index. n

Theorem 16. Let L € Q)'(B"), a function F' be analytic in B". If there exist r € (0, 3],
no € Z, po > 1 such that for each 2° € B™ and for some K° € Z" with ||[K°|| < ng the
inequality (42) holds then F' has bounded L-index in joint variables.

Proof. The proof of sufficiency in Theorem 12 for » = 8 implies that N(F, L, B") < 4o0.
Let L*(z) = %(Z), *(z) = TOZ( ) 10 = 3 and r is radius for which (42) is true. In a general
case from validity of (42) for F’ and L for r < 8 we obtain

—|F(K)(Z)| : no, 2 m 20 o /0% (20
maX{K!(L*(z))K’ |K|| <ng,z€B [ 1o/ ( )}}g

P9
= {K!(TOL@)/T)K

K| < no, 2z € B” [zo,ro/(roé(zo)/r)}} <
() (
< max {% |K|| < ng, z€B” [zo,r/ﬁ(zo)]} <

po [FUOE)] _ Bpy  [FUD()]_ poB™ [FUD ()]
= KO LE°(z0) — pIKIKOL (roL(z)/r)K° gm0 KON(L*(2))K°

e. (41) holds for F, L* and ry = . As above now we apply Theorem 12 to the function
F(z) and L*(z) = roL(z)/r. This implies that F' is of bounded L*-index in joint variables.
Therefore, by Lemma 2 the function F' has bounded L-index in joint variables. O]

8. Boundedness of L-index in joint variables of analytic solutions of systems of
partial differential equations. Using Theorems 11 and 1 we obtain this corollary.
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Corollary 5. Let L € Q", F(z) be an analytic function in B”, G be a bounded domain in B"
such that d = inf, (1 —|z|) > 0. The function F'(z) is of bounded L-index in joint variables
and only if there exist p € Z, and C > 0 such that for all z € B" \ G the inequality (8)
holds.

In one-dimensional case, this corollary was obtained in [33]. It was proposed to apply
the corollary in investigation of index boundedness for entire solutions of linear higher order
differential equations (|20]).

Let us denote a = max{a, 0}, u;(t) = u;(t, R, O) = [;(¥£e™®), where a € R, ¢ € [0,77],
je{l,...,n}, r* = maxi<j<,r; # 0 that is L|R| < 1.

Let L(Re™®) be a positive continuously differentiable function in each variable ry, k €
{1,...,n}, |R| < 1,0 € [0,27]". By W(B") we denote the class of the functions L such that

r* (= (u;(t, R, ©))ipe) "/ (115 (Re™)) — 0 (61)

uniformly in © € [0,27]", j € {1,...,n}, as |[R| = 1—0, W := W
It is easy to check that condition (61) can be replaced by the stronger restriction

I
124115 (2)
as |z| - 1—0.
Lemma 3. IfL(z) = (l1(2),...,l,(2)), where every l;(z): B" — R, is a continuous function

satisfying (1) then

1

max /<R,L(TRei@)>dT S fooas [R| = 1—0.
©¢€[0,27]"
0

Proof. Using (1) we obtain
max /z”: Ty (1R6i6> dr > /z”: QLdT =
oclo.ann ) 4= 1 I\ I el Sl R|
0 J= 0 J=

:—Z%ln(1—|R|)—>+oo as |R| - 1—0.

j=1

]

Lemma 4. Let L € W(B"), F' be an analytic function in B". If there exists R' € R,
|R'| <1, and p € Z,, ¢ > 0 such that for all z € B" \ D"(0, R') inequality (8) holds then
T Inmax{|F(z)|: z € T"(0,R)}

|R|—1-0

<ec (62)

1
max_ [(R,L(7Re®))dr
0

0¢0,2x|"

Proof. Let R € R be such that 1 > |R| > |R'|, © € [0,27]". Denote o; = £, j € {1,...,n}
and A = (a1, ...,a,). We consider the function

[P (Ate™®)]
= e Ul <
g(t) maX{ L5 (Atc®) I1SII<py,
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where Ate'® = (agte®, ... a,te?") and |At| > |R/|.
% is continuously differentiable by real t € [0, 7*], outside the
zero set of function |F()(Ate®)|, the function g(t) is a continuously differentiable function
on [0,r*], except, perhaps, for a countable set of points.

Therefore, using the inequality <|g(r)| < |¢/(r)| which holds except for the points r = ¢
such that g(t ) = 0, we deduce

S) 10
i |F (At? )‘ 1 |F(S (Ate"e)|
dt \ LS5(Ate®) LS(Atele) dt

d 1 < 1 Z F(S-&—ej)(Atei@)OéjeiGj _
j=1

Since the function

PO (Ate®)

ELS(Atei@) = L5(Ate®)

F(S At z@ F(S+e-) At 0 )
_IFO)(Ate 'Zl et} ) SRIPSA) oy
J=1

Ate’e L5te (Atel@)
AR 5 Z i 10 (63)
LY9(Ate®) 4 Atele
For absolutely continuous functions hy, he, ..., hy and h(z) := max{h;(z): 1 < j < k},

W (r) < max{hi(r): 1 < j <k}, x € [a,b] (see [35, Lemma 4.1, p. 81]). The function g is
absolutely continuous, therefore, from (8) and (63) it follows that

/10 < s { (%) sl <} <

n 1. ( Atet®© F(S+e]-) Atet© FS) A z@ i +
<max{zaﬂg( 1¢9)| Pt (Ate®)] | |FO)(Ate ‘Z At@ }S
e’L

= ISI<p LS5+ei (Ate®) LS5( Atel@

< <><max{1 a4 + {Z wll }) = g0)(30) +(0),

where
Zn i _ = sj(—uh(t) "
ﬁ(t) = max{l, C} 2 Clej(Ate 9) f)/(lf) = ||I?Ha§}; {Z —lj(Atei@) } .

Thus, 4 1Ing(t) < B(t) +v(t) and

g(t) < glto) exp / (B(r) +(r))dr,

to

where ¢, is chosen such that g(to) # 0. The condition L € W (B") gives

n s (cu)t .
V() Lo ey _ 3 (i) _

Bt) — exop, agly(Ate®) =P 2 a2 (Ate®) =P

where € = ¢(R) — 0 uniformly in © € [0,27]", t =r* as |[R| — 1 —0.



64 A.I. BANDURA, O. B. SKASKIV

t
But |F(Ate®®)| < g(t) < g(to) exp [(B(7) + v(7))dr and r*A = R. Then we put t = r*
t
and obtain ’

1 F(2): T"(0,R)} =1 F(Re®)| <1 ) <
nmax{|F(z): z € T"(0,R)} neg[é%nl (Re™)| ngg[(l)ag]ng(r)_

r*

<lng(ty) + max / (B(r) +(r)dr <

0¢l0,27|"
to

<Ing(ty) + max / Za] (A7e™) (1 + pe)dr =

0¢c[0,27]"

=Ilng(ty) + max{l,c} max /Z 7a‘7l Rei@)) (1+ pe)dr.

©€0,2n|"

This implies (62). O

Lemma 5. Let L € W(B"), F' be an analytic function in B". If there exists R' € R,
|R'| <1 and p € Z, ¢ > 0 such that for all z € B" \ D"(0, R) inequality

F (o) 709 (2)
—_— = 1> <c- — K| < 4
wax { S 11 =1 < comax { N i < (60)
holds then | . (0. R
i nmad] (2)]: = € T b o (4 1) max{1, ). (65)

max f (R,L(TRe™®))dr

0¢[0,27]"

Proof. The proof of Lemma 5 is similar to that of Lemma 4.
Let R € R be such that 1 > |R| > |R/|, © € [0,27]". Denote a; = =, j € {1,...,n}

and A = (g, ...,a,). We consider the function
|[F(Ate®)]
t) = e |5 <
ot0) = max { L2 st <),
where At = (aqt,. .., ant), Ate’® = (aite?® ... a,te?) and |At| > |R'].
[F5) (Ate')|

As above the functlon is contlnuously differentiable by real ¢ € [0, 7], outside

SILS (Ate™®) 1
the zero set of the function |F)(Ate’®)|, the function g(t) is a continuously differentiable
function on [0, 7*], except, perhaps, for a countable set of points.

Therefore, using the inequality <|g(r)| < |¢/(r)| which holds except for the points r = ¢

such that g(t ) = 0, we deduce
(s) i
i |F (Ate : )| _ 1 ’F(S (At€z®)|
dt \ S'L%(Ate™®) SILS (Ate®®) dt

d 1 1
— <
dt STLS(Atei®) = SILS(Atei®)

+|FS)(Ate'®) Z FSFe)(Ate™®)a,e’ | —
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’F(S | S;u J n |F S+ej)(At616)’ o
SILS( Atez@ Zl Atele = Z (S+e.)!Lsﬂej(Atei@)aj(sj+1)lj(Ate H
O (4169)] O 55— 1)
SlLS Ateze Z Atez@ : (66)

For absolutely continuous functions hy, he, ..., hy and h(x) := max{h;(z): 1 < j < k},
P (z) < max{hi(r): 1 < j < k}, x € [a,b] (see [35, Lemma 4.1, p. 81]). The function g is
absolutely continuous. Therefore, (8) and (66) yield

J(t) < max{dt (%) H[IS|| < N} <

< max zn: (s + 1)1;(Ate’®)| F5Fei) (Atei®)| . |F(5) (Atei®)| & Z s;(—ul(t)* .
ISli<p (S + ;) ILF¥ei (Ate®) SILS(Atei®) Atel@

Jj=

< g(t) (max{l ¢} max {Z a;(s; + 1)1;(Ate’®) 5 +

I1Sl<p

j(=uj(t) "
+ ”Ig“aé; {]Zl W}) g(t)(B(t) + (1)),

where
e A i© _ AN ASOV
B(t) = max{1,c} HI?H?E; {; a;j(s; + 1)1;(Ate )} , (@) ﬁ%ﬁ {jl 1;(Ate®)

Thus, 4 Ing(t) < B(t) +~(t) and

9(t) < glto) exp / (B(r) +~(r))dr,

to

where tg is chosen such that g(ty) # 0. Denote 3(t) = > i1 il ;(Ate™®). Since L € W (B"),
for some S*, ||S*|| < p and S, ||S| < p, we obtain

n o s(=u)t
V(1) _ 2= ey e L (GO IS ()t
B0 S agly(Ate®) = Z;Sj o Ate®) =7 2 2 (Ate®) = P°
B(t)  max{l,c} > (35 + 1)1;(Ate™®)
B(t) >y ajli(Ate®)
> L ;851 (Ate™®)

2 i1 @5l (Ate’®)

< max{l,c} + max{l,c}Zsj < max{1,c}(1+p),
j=1

= max{1, c} + max{1l, c}

where € = ¢(R) — 0 uniformly in © € [0,27]", t =r* as |[R| - 1 -0
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t
But |F(Ate™®)| < g(t) < g(to)exp [(B(7) +v(7))dr and r*A = R. Then we put t = r*
t
and obtain ’

] F(z): T(0 =1 ©) <1 " <
nmax{|F(z): z€T"(0,R)} n mmax F(Re™)| ngg[éaéﬁ]ng(r)_

<lIng(tg) + max /(6(7’) +y(7))dr <

0€0,2x|"
to

<lIng(tg) + max /Za] (A7e®) (max{1,c}(1 +p) + pe)dr =

0¢€l0,2x|"

=Ing(tp) + max /Z le Rei@> (max{1,c}(1 + p) + pe) dr.

©c[0,2n]n

This implies (65). O

Using proved lemmas we will formulate and prove propositions that provide growth esti-
mates for analytic solutions of the following system of partial differential equations:

Grio;()FP(2) + Y G (2)F(2) = Hy(=), j € {1,....n} (67)
15;l1<p;—1
p; €N, S; € Z}, Hj and Gg; are analytic functions in B”. Denote QW (B") = Q(B")NW (B").
Accordingly, QW (D) = Q(D) N W (D).
We will say that non-homogeneous system of PDE’s (67) belongs to class A(G, H, L), if
L € QW (B"), for all z € B" and for every j € {1,...,n} the analytic functions H; and G,
in B" satisfy the following conditions:

1) for every ||S;|| < pj — 1 and for each M € Z7,

1M <143 pr, [GE7 ()L (2) < B, arll? (2)| Gy, (2)],
k=1

k#j
G (2)] < By, LM (2)|Gy, (2],

pjil;

2) for every I € 77,

I
11l =1+ pe [H"(2)] < DijLl (2) | Hy(2),
=
3) Gp1,(2) # 0, where B, a1, Dy, By, m are positive constants, H(z) = (Hyi(z),...,
H,(%)), G(z) is a matrix consisting of coefficients Gg,(z2) of system (67).

Homogeneous system of PDE’s (67) belongs to class A(G, 0, L), if condition 1) holds for

M € Z7, such that || M| < > ki pr and Gp,.1,(2) # 0. Conditon 2) is not required in this
k#j

case.
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Instead of G1,(2) # 0 we can require validity of conditions 1) and 2) for all z €
B™ \ D"(0, R'). It is possible in view of Theorem 11. If for some M € Z} Gk(g]y)(z) =0 or

H;M)(z) = 0 then we suppose that Bg, ry = 0 or Dy ; = 0, respectively.

Theorem 17. If non-homogeneous system of PDE’s (67) belongs to class A(G,H, L) and
an analytic function F(z) in B" satisfies (67) then F' has bounded L-index in joint variables

and 1 F T"(0, R
Im nmax{|F(z)|: z € T"(0, R)}

|R|—1—0

< max{1, c}, (68)

1
R,L(7Re®))d
@g[g)%noﬂ ,L(7Ret®))dr

where c is defined in (73).

Proof. Taking into account that the function F(z) satisfies system (67), we calculate the
partial derivative I € Z7 in each equation of the system

> MG () FEiet M ()4

0<M<I
CX Y AR - @
0<M<I IS511<p;—1
where C}V[ - ml!(1‘1_mf;!!......::i!(in—mn)! and

il =1=p+> =1+
k=1 k=1
k#j
Using the second condition of the class definition A(G, H, L), we obtain
[H}"(2)] < D1yl (2) | Hy (2)] <
< Dy,;L'(2) (\Gpjej(Z)HF(p"ej)(Z)! + > Ist(Z)HF(Sj)(z)D- (70)

1S;]1<p;—1

Equation (69) yields

. 1 I it T
FOmTE) = e (76 = 30 OPGRI R0 () -
77 0]%41\;%1
M Ty
- > Y G FEHNG)), (71)
0<M<I 1S5 l1<p;—1

From (71) and the first condition it follows

o 1 . _
‘F(p] J+1)(Z)|: Dy L(2) |Gpjej(2)||F(p] i) (2)|+ Z |G5j(z)||F(S;)(z)| +

[Grye, (2] 1;1<p; 1

+ 30 MG FEe TG+ ST o ST G @) [P M) | <

pbje;
o<M<I o<M<I Sill<p;j—1
fyAs 155 11<p;
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< Dy Li(2) | (3% (2)| 4- Z BSj7Oije]'_Sj(Z)|F(Sj)(2)| +
1S l1<p;—1

+ 3 OV By, LM ()| F®1oH M0 () 4

0<M<I
M#0

+ > CM N By y L SN () [P EM ()| (72)

0<M<I |S;]<p;—1

Dividing this inequality by LPi%%1(z), we obtain that for every

=1+ m
=

and j € {1,...,n}

‘F(Pjej+1)(z)’

’F(pjej)(zﬂ |F(Sj)(z)|
Lrieitl(z) SDu\ ey F Z BSJ"OLT +

Lriei(z) s (2)

(pjej+I1—M) (Sj4+1—M)
M | £ (2)] M | £ (2)]
T Z Cr Bpje;,m Lpses =M () + Z Cr Z Bs;.m LS+ =M (z)

0<M<I o<M<I Sill<p;—1
V40 I i1<p;

IN

< | Dr;(1+ Z Bs;0) + Z C;WBpjeij+ Z cr' Z Bs; | X

1S;11<p;—1 0]%/[1”;%1 0sM<I 15 ll<p;—1

FO) (2 -
><max{|LS—((Z))|: 15 < ;p]}.

Obviously, ||pje; + I|| = 1+ >_7_, p;. This implies

[FO)] - [F) ()] -
max{ ————: |K|| =14+ ) p; p <max{l,c} -max ——=:|IS||< D p, ¢,
{ LR (2) 2.7 L3(:) 2.7
where
c= max D (1+ Z Bs;0) + Z C’}V[Bpjej,M%—
IMll=1—p;+X7_; P>
je{l,...n} I1S511<pj—1 OJ\SJ]L;A%I
+ > " > Bsu (73)
0<M<I 15;11<p;—1

for all z € C™\ D*(0, ).
Thus, by Lemma 4 estimate (68) holds, and by Corollary 5 the analytic function F' in B"
has bounded L-index in joint variables. O]
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If system (67) is homogeneous (H;(z) = 0), the previous theorem can be simplified.

Theorem 18. If homogeneous system of PDE’s (67) belongs to class A(G,0,L) and an

analytic function F' in B" is a solution of the system then F' has bounded L-index in joint
variables and

— lnmax{|F( )|: 2z € T*(0,R)}

lim < max{1,c}, (74)
|R|—1-0
max f (R,L(TRe™®))dr
©c[0,27]"
where ¢ is defined in (73) with Dr; = 0 and ||I|| = —p; + > ,_, px instead of ||I| =
1= pj + > Pre
Proof. If H;j(z) =0 then (71) implies
PR = o | = 3 CFGRD (P ()
O&A;BI
> O Y G@FEHTIE) | (75)
0<M<I ||S;|<p;—1
Hence, we obtain
i€ej 1 e
|F®ietD ()] < e Z CMpre (2)||[F®se =M () |+
e Mo
+ > X 1GE EIFSHG)
0<MSI |i5]<p;~1

Dividing the obtained inequality by LP®*/(z) and using assumptions of the theorem on
the functions Gg;, we deduce

| Feies+D)(2)] - 1 Z CM B, o LM (2)|Gye, (2)] | F®oH =2 ()| +
Lesestl(z) 7 |Gy (2) [LP5%H (2) o v
7 ey

+ Y O Y B PG, () [FEHT()] | =

0=M=I 1S5lI<p;—1

(pje;+I—M) (Sj+I1—M)
mp ()] £ (2|
Z CT" Bpjejm LpieiH =M (z) T Z CI Z Bs; LS+ =M ()

0<M<I 0<M<I 1S;11<p;j—1
M#0

IN

< Z C Bye, i+ Z oY Z Bg; m | X

0<M<I o<M<I Sill<p;—1
fraes 155 11<p;
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|1 (S)(Z)| -
Xxmax<{ ——: ||5]| < -1+ Dip -
{ 5(2) 15l ]E 1: j

Obviously, [|pje; + I|| = >_7_, p;. Therefore,

|[FP)| R [F®()]
maX{LK—(z).HKH—ij < max{1, ¢} - max 50 ||S||<—1+Zp]

J=1

c=  max Z cMB e M+ Z cM Z Bs; m

HIH—*PjJer:lPk,
ety \%5 0SMSI Is;l<p-1

for all z € B™ \ D*(0, R').
Thus, all conditions of Corollary 5 are satisfying. Hence, the function F' has bounded
L-index in joint variables and by Lemma 4 estimate (74) holds. O

Note that estimate (68) and (74) cannot be improved (see examples for n = 1 in [20]).

Moreover, using Corollary 5 and Lemma 5 we can supplement two previous Theorems
17 and 18 with propositions that contain estimates of max{|F(z)|: z € T"(0, R)}, which
can sometimes be better than (74) and (68). Two following theorems have proofs that of to
Theorems 17 and 18.

Theorem 19. If non-homogeneous system of PDE’s (67) belongs to class A(G,H,L) and
an analytic function F(z) in B" satisfies (67) then F' has bounded L-index in joint variables

and

T lnmax{|F( )|: z € T"(0,R)}

|R|—1—0

< max{1, c}, (76)
max f (R,L(TRe™®))dr

©c[0,27]" |

where ¢ is defined in (77).

Proof. As in proof of Theorem 17, dividing (72) by (p,je; + I)!LPi®+!(z), we obtain that for
every ||I|| =1+ ZE?,pk and j € {1,...,n}
J

e +D)( Fwies) (4 FSi) (4
| Gl | @l 3 [F59(2)]

— <Dy; — Bs; 0 "y +
(pye + DILAert(2) =77 \ (pyey + DILPei(z) — s (pgey + DILre =55 (2)
|[Fseit =D (2)]

CYB, .
T2 O Bye (ye; + DILoe (o)

o<m<I
M#0

Y e Y B [P () <
' M (pje; + DILSHM(z) =

0<MSI|8;]<p;—1

=)
(pje; + I)ILPi%i(z)

|[F)(2)|

< Dy
= M <pjej + I)ILPi®i =% (2)

+ B
1S;]1<p;—1

+
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+B Z CM |F(pjej+I—M)(Z)|
0<M<I pjej + [)!ije]-—i-I_M(Z)
M+#0

+

Y op Y
! (pje; + DILSH=M(z) =

0<M<I |8;]<p;—1

—S
5 S sy,
1, 1<ps—1 pﬂeﬁ

< | D;;
N 1 (pJeJ"'[)

. — |
(pje; +1)! 0<M<I 1S;11<p;—1 (pje; + D)t

FO)(z -
><max{|LS—((Z)>|: S]] < ;pj}.

where B = max{Bg, p, Bp,e;mu: J € {1,...,n},0 <M < I |[I|| =1+ > k- pi-}
ki
Obviously, ([pje; + I|| =1+ 37, p;. For all 2 € C*\ D"(0, R') it implies

max M'||K||=l+i ¢ < max{l,c'} - max | %) HSH<Z
KILE(z) b= ’ SILS(2) P

o<M<I
M#0

j=1
where
d = max Dy ; + B Z pjej 5)!
Ml=tp 5 o \ (pje] (pje; + 1! (pje; + )1
je{l,...,n} 1S511<p;
+1— M) S+ 11— M)

b 3 op i g S o % G I ID )

gty (pies 1) oS ysiayn Pie )

In view of Corollary 5 the analytic function F' in B™ has bounded L-index in joint vari-
ables. And by Lemma 5 estimate (76) holds. [

By analogy to the proofs of Theorems 18 and 19 it can be proved the following assertion.

Theorem 20. If homogeneous system of PDE’s (67) belongs to class A(G,0,L) and F' is an
analytic solution of the system in B" then F' has bounded L-index in joint variables and

o lnmax{|F( )|: z € T"(0, R)}

< max{1,c'},
|R|—1-0
max f (R,L(TRe™®))dr
©€0,27]™ |
where ¢ is defined in (77) with Dy; = 0 and ||| = —p; + >_,_, px instead ||I|| =1 — p; +

ZL Dk

Remark 2. The obtained propositions in this section are new even for functions analytic in
a disc. Analytic functions in the unit disc of bounded [-index are considered in [35,36].
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For example, if n = 1 then system (67) reduces to the following differential equation

p—1

() fP(2) + Y 95(2) V(=) = h(2), (78)

§—0

where h and g; are analytic functions in ID. Then Theorem 17 implies the corollary for n = 1.

Corollary 6. Let [ € QW (D) and for all z € C such that |z| > r" analytic functions h and
g; in D satisfy the following conditions

D) [67(2)] < By ()l ()| and |g4(2)] < Byal™(2)lgy(2)] for every j € {1,.....p—

1}, m € {0, 1},

2) |W(z)| < Di(2)[h(z)],

where B;,, and D are nonnegative constants, and B, is positive constant. If an analytic
function f in D satisfies (78) then f has bounded Il-index and

@Olnmaxﬂfw el=r} .
r—1— .

I (Tei?)d
2 e

where c= D(1 + ‘?;(1) Bjo) + Bp,1+2,1n:o ?Qé Bjm.
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