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For upper bounds of the deviations of Fejér sums taken over classes of periodic functions
that admit analytic extensions to a fixed strip of the complex plane, we obtain asymptotic
equalities. In certain cases, these equalities give a solution of the corresponding Kolmogorov-
Nikolsky problem.

1. Introduction. Let Cq
β,∞ (see, e.g., [14]) be classes of continuous 2π-periodic functions

given by the convolutions

f(x) = A0 +
1

π

π∫
−π

f q
β(x+ t)P q

β (t)dt.

Here,

P q
β (t) =

∞∑
k=1

qk cos
(
kt+

βπ

2

)
, q ∈ (0; 1), β ∈ R1,

is the well-known Poisson kernel, the function f q
β(·) ∈ L satisfies the condition

∥f q
β(·)∥∞ = ess sup |f q

β(·)| ≤ 1.

In this case, the sets Cq
β,∞ consist of 2π-periodic functions that admit extension to fun-

ctions f(z) = f(x + iy) analytic in the strip |y| < ln(1
q
) (see, e.g., [14]); these functions are

called the Poisson integrals.
Further, let f(x) be a 2π-periodic summable function (f ∈ L),

S[f ] =
a0
2

+
∞∑
k=1

(ak cos kx+ bk sin kx)

be its trigonometric Fourier series, ak = ak(f) and bk = bk(f), k = 0, 1, . . ., be its tri-
gonometric Fourier coefficients.
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Denote by Λ = ∥λ(n)
k ∥, k, n = 0, 1, . . . an arbitrary triangular matrix of numbers by

using which we associate every function f ∈ L with a sequence of trigonometric polynomials
Un(f ;x; Λ) of the form

Un(f ; x; Λ) =
a0
2

+
n−1∑
k=1

λ
(n)
k (ak cos kx+ bk sin kx).

Thus, any triangular matrix Λ gives a method for the construction of polynomials Un(f ;x; Λ)
or, in other words, specific sequence of polynomial operators Un(f ; Λ) defined on the set L. In
this case, one also says that the matrix Λ defines a specific method (Λ-method) for summing
Fourier series. It is clear that the operators Un(f ; Λ) are linear. For this reason, Λ-methods
are called linear summation methods for Fourier series [13].

For arbitrary natural p < n the polynomials that are given by relationship

λ
(n)
k =

{
1, 1 ≤ k ≤ n− p;

1− k−n+p
p

, n− p+ 1 ≤ k ≤ n− 1

are called de la Vallee Poussin sums. In this case, the polynomials Un(f ;x; Λ) are denoted
by Vn,p(f, x) and have the form

Vn,p(f ;x) =
1

p

n−1∑
k=n−p

Sk(f ;x),

where Sk(f ; x) , k = 0, 1, . . . are the partial Fourier sums of order k of the function f(x). If
p = 1, then Vn,p(f ;x) = Sn−1(f ;x). For p = n sums of this type are called the Fejér sums:

σn(f ;x) = Vn,n(f ; x) =
1

n

n−1∑
k=0

Sk(f ;x).

We say that the Kolmogorov–Nikolsky problem is solved for given method Un(f ; Λ) on a
class N if a function φ(n) = φ(n; Λ;N) such that

E (N;Un) = sup
f∈N

∥f(x)− Un(f ;x; Λ)∥C = φ(n) + o(φ(n)) as n → ∞

is determined in explicit form [13].
De la Vallee-Poussin sums and their special cases (Fourier sums and Fejér sums) have

been extensively studied for many decades by many prominent experts in the theory of
functions. In 1946, Nikolsky ([2]) considered the quantity

E
(
Cq

β,∞;Sn

)
= sup

f∈Cq
β,∞

∥f(x)− Sn(f ; x)∥C

where Sn(f ;x) is the n-th partial sum of the trigonometric Fourier series of the function
f(x), and established the asymptotic equality (as n → ∞)

E
(
Cq

β,∞;Sn

)
=

8qn

π2
K(q) +O(1)

qn

n
, K(q) =

π
2∫

0

du√
1− q2 sin2 u

,
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where K(q) is the total elliptic integral of the first kind, O(1) is a quantity uniformly bounded
with respect to n. In 1980, Stechkin ([12]) proposed another proof of this result, which allowed
to refine the remainder equality

E
(
Cq

β,∞;Sn

)
=

8qn

π2
K(q) +O(1)

qn

n(1− q)
,

where O(1) is a quantity uniformly bounded with respect to n, q.
It follows from these equalities that, on the classes of analytic functions, the trigonometric

Fourier sums provide an approximation which coincides in order with the best approximation
by the trigonometric polynomials of degree not greater than n. However, it is still interesti-
ng to make clear how do other approximating aggregates (e.g., de la Vallee-Poussin sums,
Fejér sums) behave on the classes mentioned above [8]. These studies may be of interest for
computational mathematics and methods of mathematical modeling.

Asymptotic (as n → ∞) equalities for upper bounds of the deviations of de la Vallee
Poussin sums for p satisfying n− p → ∞ on the classes Cq

β,∞ may be found in [11] (also [8]):

E
(
Cq

β,∞;Vn,p

)
= sup

f∈Cq
β,∞

∥f(x)− Vn,p(f ;x)∥C =

=
qn−p+1

p

(
4

π2
Kq,p +O(1)

(
q

(n− p+ 1)(1− q)s

))
,

where

Kq,p =

π∫
0

√
1− 2qp cos pt+ q2p

1− 2q cos pt+ q2
dt, s = s(p) =

{
1, p = 1,

3, p = 2, 3, ...,

O(1) is a quantity uniformly bounded with respect to n, p, q.
In the case of arbitrary p = 1, 2, ..., n the behaviour of the constant Kq,p could be inferred

by the next identity, proved in [10]:

Kq,p = 2
1− q2p

1− q2
K(qp),

where K(q) is the total elliptic integral of the first kind.
Some related problems were studied in [1, 3, 4, 5, 6, 7, 9].
In the present paper we are interested in asymptotic equalities for the quantifies

E(Cq
0,∞;σn) = sup

f∈Cq
0,∞

∥f(x)− σn(f ;x)∥C .

2. Results. Our main result is in the following theorem.

Theorem. Suppose that q ∈
(
0; 2−

√
3
]
. Then the following relations hold as n → ∞

E(Cq
0,∞, σn) =

4q

πn(1 + q2)
+O(1)

qn

n
, (1)

where O(1) is a quantity uniformly bounded with respect to n, q.
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Proof. Let

δn(f ;x) = f(x)− σn(f ;x) = f(x)− 1

n

n−1∑
k=0

Sk(f ;x) =
1

n

n−1∑
k=0

ρk(f ;x), (2)

where ρk(f ;x) = f(x)− Sk(f ; x).
For f ∈ Cq

0,∞ quantity ρm(f ;x) may be represented as follows

ρm(f ; x) =
1

π

π∫
−π

f q
0 (x+ t)

∞∑
k=m+1

qk cos ktdt =
1

π

π∫
−π

f q
0 (x+ t)

∞∑
k=0

qk+m+1 cos(k +m+ 1)tdt =

=
qm+1

π

π∫
−π

f q
0 (x+ t)

(
cos(m+ 1)t

∞∑
k=0

qk cos kt− sin(m+ 1)t
∞∑
k=0

qk sin kt

)
dt.

According to formulas

∞∑
k=0

qk cos kt =
1− q cos t

1− 2q cos t+ q2
,

∞∑
k=0

qk sin kt =
q sin t

1− 2q cos t+ q2
,

we obtain

ρm(f ;x)=
qm+1

π

π∫
−π

f q
0 (x+ t)

{
1− q cos t

1− 2q cos t+ q2
cos(m+ 1)t− q sin t

1− 2q cos t+ q2
sin(m+ 1)t

}
dt.

(3)

Comparing (2) and (3), we obtain

δn(f ; x)=
1

n

n−1∑
k=0

ρk(f ;x) =

=
1

πn

n∑
m=1

π∫
−π

f q
0 (x+ t)qm

[
(1− q cos t) cosmt

1− 2q cos t+ q2
− q sin t sinmt

1− 2q cos t+ q2

]
dt =

=
1

πn

π∫
−π

f q
0 (x+ t)

1− 2q cos t+ q2

n∑
m=1

qm[cosmt− q cos(m− 1)t]dt. (4)

We have
n∑

k=1

qk(cos kt− q cos(k − 1)t) =
n∑

k=1

qk
(
eikt + e−ikt

2
− q

ei(k−1)t + e−i(k−1)t

2

)
=

=
1

2

n∑
k=1

{[(
qeit

)k
+
(
qe−it

)k]− q2
[(
qeit

)k−1
+
(
qe−it

)k−1
]}

=

=
1

1− 2q cos t+ q2
[(q + q3) cos t− 2q2 − qn+1(cos(n+ 1)t− 2q cosnt+ q2 cos(n− 1)t)].
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Taking into account the formula (4), the following integral representation holds as n → ∞

δn(f ;x) =
q

πn

π∫
−π

f q
0 (x+ t)[(1 + q2) cos t− 2q]

(1− 2q cos t+ q2)2
dt+O(1)

qn

n
, (5)

where O(1) is a quantity uniformly bounded with respect to n, q.
The function

Γ(t) =
(1 + q2) cos t− 2q

(1− 2q cos t+ q2)2

for q ∈
(
0; 2−

√
3
]

monotonous on interval (0;π). Using the relation (5), we conclude that
for f q

0 (t) ∈ S0
M ,

S0
M =

{
f ∈ L

...
π∫

−π

f(t)dt = 0, ess sup|f(t)| ≤ 1, t ∈ [−π;π]

}
,

the following representation

δn(f ; x) =
q

πn

π∫
−π

f q
0 (x+ t)

(
(1 + q2) cos t− 2q

(1− 2q cos t+ q2)2
− −2q

(1 + q2)2

)
dt+O(1)

qn

n

is true.
For q ∈

(
0; 2−

√
3
]

we have φ(t) = sign [Γ(t)− Γ(π/2)] ∈ S0
M . Taking into account that

f q
0 (x) = φ(x), we obtain

E(Cq
0,∞, σn) =

q

πn

π∫
−π

φ(t)

(
(1 + q2) cos t− 2q

(1− 2q cos t+ q2)2
+

2q

(1 + q2)2

)
dt+O(1)

qn

(1− q)3n
=

=
2q

πn

π∫
0

∣∣∣∣ (1 + q2) cos t− 2q

(1− 2q cos t+ q2)2
+

2q

(1 + q2)2

∣∣∣∣ dt+O(1)
qn

n
. (6)

It is clear that
π∫

0

∣∣∣∣ (1 + q2) cos t− 2q

(1− 2q cos t+ q2)2
+

2q

(1 + q2)2

∣∣∣∣ dt =
=

π/2∫
0

(1 + q2) cos t− 2q

(1− 2q cos t+ q2)2
dt−

π∫
π/2

(1 + q2) cos t− 2q

(1− 2q cos t+ q2)2
dt. (7)

Making calculations, we obtain∫
cos t

(1− 2q cos t+ q2)2
dt =

(1 + q2) sin t

(1− q2)2(1− 2q cos t+ q2)
+

2q

(1− q2)2

∫
dt

1− 2q cos t+ q2
,∫

dt

(1− 2q cos t+ q2)2
=

2q sin t

(1− q2)2(1− 2q cos t+ q2)
+

1 + q2

(1− q2)2

∫
dt

1− 2q cos t+ q2
.
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Making elementary transformations, we obtain∫
(1 + q2) cos t− 2q

(1− 2q cos t+ q2)2
dt =

sin t

1− 2q cos t+ q2
,

π/2∫
0

(1 + q2) cos t− 2q

(1− 2q cos t+ q2)2
dt−

π∫
π/2

(1 + q2) cos t− 2q

(1− 2q cos t+ q2)2
dt =

2

1 + q2
.

We get asymptotic formula (1) based on (6), (7).

The formula (1) provides the solving of the Kolmogorov-Nikolsky problem when per-
forming the theorems conditions without any additional conditions.
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