On uniqueness of entropy solutions for nonlinear elliptic degenerate anisotropic equations |
|
Author |
yuliya_gorban@ mail.ru
Donetsk National University, Vinnytsia, Ukraine
|
Abstract |
In the present paper we deal with the Dirichlet problem for a class
of degenerate anisotropic elliptic second-order equations with $L^1$-right-hand sides in a
bounded domain of ${\Bbb R}^n$ $(n \geqslant 2)$. This class is described by the presence of a
set of exponents $q_1,\dots,q_n$ and a set of weighted functions $\nu_1,\dots,\nu_n$ in growth
and coercitivity conditions on coefficients of the equations. The exponents $q_i$ characterize the rates of growth of the coefficients with respect to the corresponding derivatives of unknown function, and the functions $\nu_i$ characterize degeneration or singularity of the coefficients with respect to independent variables. Our aim is to study the uniqueness of entropy solution of the problem under consideration.
|
Keywords |
nonlinear elliptic degenerate anisotropic second-order equations; $L^1$-data; Dirichlet problem; uniqueness
of entropy solution
|
DOI |
doi:10.15330/ms.47.1.59-70
|
Reference |
1. Aharouch L., Azroul E., Benkirane A. Quasilinear degenerated equations with $L^1$ datum and without
coercivity in perturbation terms// Electron. J. Qual. Theory Differ. Equ. – 2006. – V.19. – 18 p.
2. Atik Y., Rakotoson J.-M. Local T-sets and degenerate variational problems. I// Appl. Math. Lett. - 1994. - V.7, ¹4. - P. 49-53. 3. Bendahmane M., Karlsen K.H. Nonlinear anisotropic elliptic and parabolic equations in RN with advection and lower order terms and locally integrable data// Potential Anal. - 2005. - V.22, ¹3. - P. 207-227. 4. Benilan Ph., Boccardo L., Gallouet T., Gariepy R., Pierre M., Vazquez J.L. An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations// Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). - 1995. - V.22, ¹2. - P. 241-273. 5. Boccardo L., Gallouet T. Nonlinear elliptic and parabolic equations involving measure data// J. Funct. Anal. - 1989. - V.87, ¹1. - P. 149-169. 6. Boccardo L., Gallouet T. Nonlinear elliptic equations with right hand side measures// Comm. Partial Differential Equations. - 1992. - V.17, ¹3-4. - P. 641-655. 7. Boccardo L., Gallouet T., Marcellini P. Anisotropic equations in $L^1$// Differential Integral Equations. - 1996. - V.9, ¹1. - P. 209-212. 8. Cavalheiro A.C. Existence of entropy solutions for degenerate quasilinear elliptic equations// Complex Var. Elliptic Equ. - 2008. - V.53, ¹10. - P. 945-956. 9. Cirmi G.R. On the existence of solutions to non-linear degenerate elliptic equations with measures data// Ricerche Mat. - 1993. - V.42, ¹2. - P. 315-329. 10. Kinderlehrer D., Stampacchia G. An introduction to variational inequalities and their applications. - M.: Mir, 1983. - 256 p. (in Russian) 11. Kovalevsky A.A., Gorban Yu.S. Degenerate anisotropic variational inequalities with $L^1$-data - Institute of Applied Mathematics and Mechanics of NAS of Ukraine, Donetsk, 2007, preprint ¹ 2007.01. - 92 p. (in Russian) 12. Kovalevsky A.A., Gorban Yu.S. Degenerate anisotropic variational inequalities with $L^1$-data// C. R. Math. Acad. Sci. Paris. - 2007. - V.345, ¹8. - P. 441-444. 13. Kovalevsky A.A., Gorban Yu.S. On T-solutions of degenerate anisotropic elliptic variational inequalities with $L^1$-data// Izv. Math. - 2011. - V.75, ¹1. - P. 101-160. (in Russian) 14. Kovalevsky A.A., Gorban Yu.S. Solvability of degenerate anisotropic elliptic second-order equations with $L^1$-data// Electron. J. Differential Equations. - 2013. - ¹167. - P. 1-17. 15. Kovalevsky A.A. Entropy solutions of Dirichlet problem for a class of nonlinear elliptic fourth order equations with $L^1$-right-hand sides// Izv. Math. - 2001. - V.65, ¹2. - P. 27-80. (in Russian) 16. Li F.Q. Nonlinear degenerate elliptic equations with measure data// Comment. Math. Univ. Carolin. - 2007. - V.48, ¹4. - P. 647-658. |
Pages |
59-70
|
Volume |
47
|
Issue |
1
|
Year |
2017
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |