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The Fourier problem for nonlinear parabolic equations with variable exponents of nonlin-
earity and time delay is considered. The existence and uniqueness of weak solutions of the
problem are investigated. Also, its a priori estimates are obtained.

Introduction. In this paper we consider the Fourier problems for the nonlinear parabolic
equations with variable exponents of nonlinearity and time depended delay. A typical
example of the equations being studied here is

ut−
n∑

i=1

(
âi(x, t)|uxi

|pi(x)−2uxi

)
xi

+â0(x, t)|u|p0(x)−2u+

t∫
t−τ(t)

ĉ(x, t, s)u(x, s)ds =f(x, t), (1)

(x, t) ∈ Q := Ω × (−∞, 0), where Ω is a bounded domain in Rn (n ∈ N), â0, . . . , ân are
measurable positive functions onQ, p0, . . . , pn (the exponents of nonlinearity) are measurable
bounded functions such that p0(x) > 2, . . . , pn(x) > 2 for a.e. x ∈ Ω, τ is a nonnegative
continuous function, ĉ is a measurable bounded function, f is an integrable function, u is
unknown function.

Fourier problems for evolution equations arise in modeling different nonstationary proces-
ses in nature, that started a long time ago and initial conditions do not affect on them in
the actual time moment, but boundary conditions do affect them. Thus, we can assume that
the initial time is −∞, while 0 is the final time, and initial conditions can be replaced with
the behaviour of the solution as time variable turns to −∞. Fourier problem for evolution
equations appears during modeling in many fields of science such as ecology, economics,
physics, cybernetics, etc. (see, e.g., [6]–[8], [12]–[14], [30], [31], [33], [36]–[38]), and they have
been widely studied. Good reference overview on problems without initial conditions for
evolution equations without time delay can be found in [12].

Equation (1) in the case Q = Ω × (0, T ) or Q = Ω × (−∞, 0), where Ω is a domain
in Rn, T > 0, is an example of nonlinear parabolic equations with variable exponents of
nonlinearity. These equations describe many physical processes such as electromagnetic fields,
electrorheological fluids, image reconstruction processes, current flow in variable temperature
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field (see [27], [35]). For investigation of such equations generalized Lebesgue and Sobolev
spaces are used. The mentioned spaces were firstly introduced in [32]. Properties of these
spaces were studied in [32], [22], [26], [28], [18] e.a. The various problems for nonlinear
differential equations of type (1) with ĉ = 0 are actively being investigated (see, e.g., [27],
[1], [2], [3] [6], [9], [13], [23], [29], and references therein).

Equations with time delay arise during modeling in population dynamics, in non-Newto-
nian filtration, heat flux, etc. ([24]). The equations of type (1) on finite time interval with
both constant exponents of nonlinearity and time delay are studied in [4], [5], [25], [21], [17]
and others. Good reference overview on such papers can be found in [25]. Note that in these
papers the semigroups theory is used.

Partial differential equations with a variable delay are less studied, and we known only
paper [11] and works of Chueshov and Rezounenko (in particular, [15], [34]), where equations
of type (1) on finite time interval, with p0(x) = . . . = pn(x) = 2, τ = τ(u), are considered. In
[15], a certain abstract parabolic problem with the state dependent delay term of a rather
general structure is investigated. In [34], a nonlinear partial functional differential equations
with main linear elliptic operator and the non-local nonlinear term with delay is investigated.
In [11] equations of type (1) on finite time interval with variable exponents of nonlinearity
and time delay are investigated. For proving existence of solutions of problems considered in
these papers the Galerkin approximation is used. Fourier problems for parabolic equations
with constant time delay were investigated in [10], [19].

To the best of our knowledge, the Fourier problems for parabolic equations with variable
exponents of nonlinearity and time depended delay are an untreated topic in the literature.
These problems are considered in our paper. Existence and uniqueness of solution of the
problem are proved. This paper can be considered as continuation of [11].

The paper is organized as follows. In Section 1, the main notations and functional spaces
are introduced. The statement of the problem and formulation of the main result are given
in Section 2. The main result is proved in Section 3.

1. Notation and auxiliary facts. Let n be a natural number, Rn be the standard linear
space of ordered collections x = (x1, . . . , xn) of real numbers with the norm |x| := (|x1|2+. . .+
|xn|2)1/2. Suppose that Ω ⊂ Rn is a bounded domain with the piecewise smooth boundary
∂Ω, ∂Ω = Γ0∪Γ1, where Γ0 is the closure of an open set on ∂Ω (in particular, either Γ0 = ∅
or Γ0 = ∂Ω), Γ1 := ∂Ω \ Γ0, ν = (ν1, . . . , νn) is the unit outward pointing normal vector on
the ∂Ω. Denote S := (−∞, 0], Q := Ω× S, Σ0 := Γ0 × S, Σ1 := Γ1 × S, Qt1,t2 := Ω× (t1, t2)
for arbitrary real t1 and t2, t1 < t2.

Let us introduce some functional spaces. Let either G = Ω or G = Qt1,t2 (−∞ < t1 <
t2 < +∞), or G = Q. Suppose that r ∈ L∞(Ω), r(x) ≥ 1 for a.e. x ∈ Ω. Consider the
linear space Lr(·)(G) of the measurable functions v : G → R such that ρG,r(v) < ∞, where
ρG,r(v) :=

∫
Ω
|v(x)|r(x) dx if G = Ω, ρG,r(v) :=

∫∫
Qt1,t2

|v(x, t)|r(x) dxdt if G = Qt1,t2 (−∞ <

t1 < t2 < +∞), and ρG,r(v) :=
∫∫

Q
|v(x, t)|r(x) dxdt if G = Q. This is a Banach space with

respect to the norm ∥v∥Lr(·)(G) := inf{λ > 0 | ρG,r(v/λ) ≤ 1} (see [26, p. 599]) and it is called
a generalized Lebesgue space. Note that if r(x)=r0 = const ≥ 1 for a.e. x ∈ Ω then ∥ · ∥Lr(·)(G)

is equal to the standard norm ∥ · ∥Lr0 (G) of the Lebesgue space Lr0(G). Note also that the
set C(G) is dense in Lr(·)(G) (see [26, p. 603]). According to [26, p. 599], if ess inf

x∈Ω
r(x) > 1,

then the space Lr(·)(G) is reflexive and the conjugate space [Lr(·)(G)]
′ equals Lr′(·)(G), where

the function r′ is defined by the equality 1
r(x)

+ 1
r′(x)

= 1 for a.e. x ∈ Ω. However, there
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exist properties of standard Lebesgue spaces that is not valid for the generalized Lebesgue
spaces. Thus the properties of the generalized Lebesgue spaces are not simple corollaries
of the correspondent properties of the standard Lebesgue spaces (see, e.g., the mentioned
papers).

We denote by Lr(·),loc(Q) the space of measurable functions g : Q → R such that the
restriction of g on Qt1,t2 belongs to Lr(·)(Qt1,t2) for each t1, t2 ∈ S. This space is complete
locally convex with respect to the family of seminorms

{
∥·∥Lr(·)(Qt1,t2)

∣∣ t1, t2 ∈ S
}
. A sequence

{gm} is said to be convergent strongly (resp., weakly) in Lr(·),loc(Q) provided the sequences of
restrictions {gm|Qt1,t2

} are convergent strongly (resp., weakly) in Lr(·)(Qt1,t2) for all t1, t2 ∈ S.
Similarly we can define the space L∞,loc(Q).

Consider the function p = (p0, p1, . . . , pn) : Ω → Rn+1 such that following condition is
satisfied:

(P) for every i ∈ {0, 1, . . . , n}, pi : Ω → R is a measurable function such that
p−i := ess inf

x∈Ω
pi(x) ≥ 2, p+i := ess sup

x∈Ω
pi(x) < +∞.

Denote by p′ = (p′0, . . . , p
′
n) : Ω → Rn+1 the vector-function such that 1

pi(x)
+ 1

p′i(x)
= 1 for

a.e. x ∈ Ω (i = 0, n). Clearly that p′i : Ω → R is a measurable bounded function such that
ess inf
x∈Ω

pi(x) ≥ 1 (i = 0, n).

Now let us give the definitions of the following functional spaces. First, denote by W 1
p(·)(Ω)

the generalized Sobolev space of the functions v ∈ Lp0(·)(Ω) such that vxi
∈ Lpi(·)(Ω)

(i = 1, n). This is a Banach space with respect to the norm ∥v∥W 1
p(·)(Ω) := ∥v∥Lp0(·)(Ω) +∑n

i=1 ∥vxi
∥Lpi(·)(Ω). Let W̃ 1

p(·)(Ω) be the subspace of W 1
p(·)(Ω) that is the closure of the space

C̃1(Ω) := {v ∈ C1(Ω) | v|Γ0 = 0
}

in W 1
p(·)(Ω). Set Vp(Ω) := W̃ 1

p(·)(Ω).

Next, for arbitrary t1, t2 ∈ R, we denote by W 1,0
p(·)(Qt1,t2) the set of functions w ∈

Lp0(·)(Qt1,t2) such that wxi
∈ Lpi(·)(Qt1,t2) for all i ∈ {1, . . . , n}. We define the norm

∥w∥W 1,0
p(·)(Qt1,t2 )

:= ∥w∥Lp0(·)(Qt1,t2 )
+

∑n
i=1 ∥wxi

∥Lpi(·)(Qt1,t2 )
. Denote by W̃ 1,0

p(·)(Qt1,t2) the sub-

space of W 1,0
p(·)(Qt1,t2) consisting of functions v such that v(·, t) ∈ W̃ 1

p(·)(Ω) for a. e. t ∈ [t1, t2].

Let us denote by W̃ 1,0
p(·),loc(Q) the linear space of measurable functions such that their

restrictions on Qt1,t2 belong to W̃ 1,0
p(·)(Qt1,t2) for all t1, t2 ∈ S. This space is complete locally

convex with respect to the family of seminorms
{
∥ · ∥W 1,0

p(·)(Qt1,t2)

∣∣ t1, t2 ∈ R
}
.

Denote by Fp′(·),loc(Q) the space of vector-functions (f0, f1, . . . , fn) such that for each
i ∈ {0, 1, . . . , n} fi ∈ Lp′i(·),loc(Q) (i = 1, n), and for each i ∈ {1, . . . , n} fi = 0 a.e. in some
neighborhood of the surface Σ1.

Finally, define by C1
c (I), where I is an interval, a linear space defined on I continuously

differentiable finite functions, moreover, if I = (t1, t2), then we will write C1
c (t1, t2) instead

of C1
c ((t1, t2)).

The following auxiliary result, which had been proved in [9], will be used in the sequel.

Lemma 1. Suppose that w ∈ W̃ 1,0
p(·)(Qt1,t2), where t1, t2 ∈ R (t1 < t2), satisfies the following

identity

t2∫
t1

∫
Ω

{
− wψφ′ + (g0ψ +

n∑
i=1

giψxi
)φ

}
dxdt = 0, ψ ∈ Vp(Ω), φ ∈ C1

c (t1, t2), (2)
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for some gi ∈ Lp′i(·)(Qt1,t2) (i = 0, n).
Then w ∈ C([t1, t2];L2(Ω)) and for any σ1, σ2 ∈ [t1, t2] (σ1 < σ2), for every θ ∈ C1([t1, t2])

we have

1

2
θ(t)

∫
Ω

|w(x, t)|2 dx
∣∣∣t=σ2

t=σ1

− 1

2

σ2∫
σ1

∫
Ω

|w|2θ′ dxdt+
σ2∫

σ1

∫
Ω

{
g0w +

n∑
i=1

giwxi

}
θ dxdt = 0. (3)

Remark 1. Note that from w ∈ L2(Q) it follows that

lim
σ→−∞

σ∫
σ−1

∫
Ω

|w|2dxdt = 0. (4)

If w ∈ L2(Q)∩C(S, L2(Ω)), then it follows that there exists sequence {tk}∞k=0 ⊂ S such that
tk → −∞ as k → +∞, and

lim
k→+∞

∫
Ω

|w(x, tk)|2dx = 0. (5)

2. Statement of the problem and main result. In this paper we consider the problem
of finding a function u : Q→ R satisfying (in some sense) the equation

ut −
n∑

i=1

d

dxi
ai(x, t, u,∇u) + a0(x, t, u,∇u) +

t∫
t−τ(t)

c(x, t, s, u(x, s))ds

= −
n∑

i=1

∂

∂xi
fi(x, t) + f0(x, t), (x, t) ∈ Q, (6)

and the boundary conditions

u
∣∣∣
Σ0

= 0,
n∑

i=1

ai(x, t, u,∇u) νi
∣∣∣
Σ1

= 0. (7)

Here τ : S → R is a continuous bounded function such that τ(t) ≥ 0 for all t ∈ S, τ+ :=
sup
t∈S

τ(t), and ai : Q × R1+n → R, c : Q × S × R → R, fi : Q → R (i = 0, n) are given

real-valued functions.
We introduce the following classes of the initial data.
Let p satisfy condition (P). Define A(p) to be the set of the collections (a0, a1, . . . , an) of

the real-value functions ai : Q× R1+n → R (i = 0, n) satisfying the following assumptions:
(A1) for every i ∈ {0, 1, . . . , n}, ai is the Caratheodory function

(
i.e., ai(x, t, ·, ·) : R1+n →

R is a continuous for a.e. (x, t) ∈ Q, and ai(·, ·, ρ, ξ) : Q → R is a measurable for every
(ρ, ξ) ∈ R1+n

)
, and ai(x, t, 0, 0) = 0 for a.e. (x, t) ∈ Q;

(A2) for every i ∈ {0, 1, . . . , n}, for a.e. (x, t) ∈ Q, and for every (ρ, ξ) ∈ R1+n the
following estimate is valid

|ai(x, t, ρ, ξ)| ≤ C1

( n∑
j=1

|ξj|pj(x)/p
′
i(x) + |ρ|p0(x)/p′i(x)

)
+ hi(x, t),
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where C1 is a positive constant, and hi ∈ Lp′i(·)(Q);
(A3) for a.e. (x, t) ∈ Q and for every (ρ1, ξ

1), (ρ2, ξ2) ∈ R1+n the following inequality
holds

n∑
i=1

(
ai(x, t, ρ1, ξ

1)− ai(x, t, ρ2, ξ
2)
)
(ξ1i − ξ2i ) +

(
a0(x, t, ρ1, ξ

1)− a0(x, t, ρ2, ξ
2)
)
(ρ1 − ρ2) ≥

≥ K1

( n∑
i=1

|ξ1i − ξ2i |pi(x) + |ρ1 − ρ2|p0(x)
)
+K2|ρ1 − ρ2|2, (8)

where K1, K2 are positive constants.

Define C to be the set of the functions c(x, t, s, ρ), (x, t, s, ρ) ∈ Q× S ×R, satisfying the
following assumptions:

(C1) c is a Caratheodory function
(
i.e., c(x, t, s, ·) : R → R is a continuous function for

a.e. (x, t, s) ∈ Q× S, and c(·, ·, ·, ρ) : Q× S → R is a measurable function for every ρ ∈ R
)
,

in addition, c(x, t, s, 0) = 0 for a.e. (x, t, s) ∈ Q× S;
(C2) there exists a constant L > 0 (depending on c) such that for a.e. (x, t, s) ∈ Q × S

and for every ρ1, ρ2 ∈ R the inequality∣∣c(x, t, s, ρ1)− c(x, t, s, ρ2)
∣∣ ≤ L|ρ1 − ρ2| (9)

holds.

Remark 2. From the condition c(x, t, s, 0) = 0 (see (C1)) and (C2) follows that for a.e.
(x, t, s) ∈ Q× S, and for every ρ ∈ R the following estimate is valid

|c(x, t, s, ρ)| ≤ L|ρ|. (10)

Now we can give a definition of the weak solution of problem (6), (7).

Definition 1. Let p satisfy condition (P), (a0, a1, . . . , an) ∈ A(p), c ∈ C, (f0, f1, . . . , fn) ∈
Fp′(·),loc(Q). The function u ∈ W̃ 1,0

p(·),loc(Q)∩L2(Q)∩C (S;L2(Ω)) is called a weak solution of
problem (6), (7), if the integral equality

∫∫
Q

{ n∑
i=1

ai(x, t, u,∇u)vxi
φ+ a0(x, t, u,∇u)vφ+ vφ

t∫
t−τ(t)

c(x, t, s, u(x, s)) ds−

−uvφ′
}
dxdt =

∫∫
Q

{ n∑
i=1

fivxi
φ+ f0vφ

}
dxdt (11)

holds for every v ∈ Vp(Ω) and φ ∈ C1
c (−∞, 0).

The main result of our paper is the following statement.

Theorem 1. Let p satisfy condition (P), (a0, a1, . . . , an) ∈ A(p), c ∈ C, (f0, f1, . . . , fn) ∈
Lp0(·)(Q)× Lp1(·)(Q)× · · · × Lpn(·)(Q), and

K2 − 2Lτ+ > 0. (12)
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Then problem (6), (7) has a unique weak solution, and it belongs to W̃ 1,0
p(·)(Q), and it satisfies

the following estimate

sup
t∈S

∫
Ω

|u(x, t)|2 dx+
∫∫
Q

{ n∑
i=1

∣∣uxi
(x, t)

∣∣pi(x)+|u(x, t)|p0(x) + |u(x, t)|2
}
dxdt ≤

≤ C2

∫∫
Q

{ n∑
i=0

∣∣fi(x, t)∣∣p′i(x)} dxdt, (13)

where C2 > 0 is a constant depending only on K1, K2, L, τ
+ and p−i (i = 0, n).

3. Proof of the main result. For a function w : Q→ R we denote

aj(w)(x, t) := aj(x, t, w(x, t),∇w(x, t)), (x, t) ∈ Q, j = 0, n,

c(w)(x, t, s) := c(x, t, s, w(x, s)), (x, t, s) ∈ Q× S, ∂iw = wxi
, i = 1, n, ∂0w = w.

Let us prove Theorem 1 in three steps: firstly, we prove the uniqueness of solution of prob-
lem (6), (7), later, its existence and, finally, we show correctness of estimate (13).

First step (uniqueness of solution). Assume the opposite. Let u1 and u2 be two different
weak solutions of the problem. Denote w := u1 − u2. Consider the difference between (11)
with u = u2 and (11) with u = u1, we obtain

−
∫∫
Q

wvφ′ dxdt+

∫∫
Q

[ n∑
i=0

(ai(u1)− ai(u2))∂iv+

+v

t∫
t−τ(t)

(
c(u1)− c(u2)

)
ds
]
φdxdt = 0 ∀v ∈ Vp(Ω), ∀φ ∈ C1

c (−∞, 0). (14)

According to Lemma 1, with θ(t) = 1, t ∈ R, from equality (14) we get

1

2

∫
Ω

|w(x, σ2)|2 dx − 1

2

∫
Ω

|w(x, σ1)|2 dx+
σ2∫

σ1

∫
Ω

[ n∑
i=0

(ai(u1)− ai(u2))(∂iu1 − ∂iu2)+

+w

t∫
t−τ(t)

(c(u1)− c(u2)
)
ds
]
dxdt = 0, (15)

where σ1, σ2 ∈ S (σ1 < σ2) are arbitrary.
From condition (A3) for a.e. (x, t) ∈ Q we have

n∑
i=0

(ai(u1)− ai(u2))(∂iu1 − ∂iu2) ≥ K1

n∑
i=0

|∂iu1 − ∂iu2|pi(x) +K2|u1 − u2|2. (16)

Consider the last term from equality (15). Using condition (C2), Fubini Theorem and
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Hölder’s inequality, for a.e. x ∈ Ω we obtain

∣∣∣ σ2∫
σ1

w(x, t)
( t∫
t−τ(t)

(c(u1)(x, t, s)− c(u2)(x, t, s)
)
ds
)
dt
∣∣∣ ≤ L

σ2∫
σ1

|w(x, t)|
( t∫
t−τ+

|w(x, s)|ds
)
dt ≤

≤ L
√
τ+

 σ2∫
σ1

|w(x, t)|2dt

1/2 σ2∫
σ1

( t∫
t−τ+

|w(x, s)|2ds
)
dt

1/2

. (17)

Now consider the second integral in right-hand side of inequality (17). Changing order of
integration and assuming w(x, t) = 0 for x ∈ Ω, t > 0, for a.e. x ∈ Ω we have

σ2∫
σ1

( t∫
t−τ+

|w(x, s)|2ds
)
dt ≤

σ2∫
σ1−τ+

|w(x, s)|2ds
s+τ+∫
s

dt = τ+
( σ2∫
σ1

|w(x, s)|2ds+
σ1∫

σ1−τ+

|w(x, s)|2ds
)
.

(18)

Substituting (18) in (17), the last term from obtained above relations chain instead of
the first one, and using Cauchy inequality:

√
ab ≤ a+ b (a ≥ 0, b ≥ 0), we obtain

∣∣∣ σ2∫
σ1

w(x, t)
( t∫
t−τ(t)

(c(u1)(x, t, s)− c(u1)(x, t, s))ds
)
dt
∣∣∣ ≤

≤ Lτ+
(
2

σ2∫
σ1

|w(x, t)|2dt+
σ1∫

σ1−τ+

|w(x, t)|2dt
)
. (19)

Using (16), (19), from (15) we obtain

1

2

∫
Ω

|w(x, σ2)|2dx +K1

σ2∫
σ1

∫
Ω

( n∑
i=0

|∂iu1 − ∂iu2|pi(x)
)
dx+ (K2 − 2Lτ+)

σ2∫
σ1

∫
Ω

|w(x, t)|2 dxdt ≤

≤ 1

2

∫
Ω

|w(x, σ1)|2 dx + Lτ+
σ1∫

σ1−τ+

∫
Ω

|w(x, t)|2 dxdt.

Then, taking into account (12), we have∫
Ω

|w(x, σ2)|2 dx ≤
∫
Ω

|w(x, σ1)|2 dx+ 2Lτ+
σ1∫

σ1−τ+

∫
Ω

|w(x, t)|2 dxdt. (20)

Since w ∈ L2(Q)∩C(S, L2(Ω)), according to Remark 1, there exists a sequence {σ1,k}∞k=0 ⊂ S,
such that σ1,k −→

k→+∞
−∞ and

∫
Ω
|w(x, σ1,k)|2 dx+ 2Lτ+

∫ σ1,k

σ1,k−τ+

∫
Ω
|w(x, t)|2 dxdt →

k→+∞
0.

Let us fix an arbitrary σ2 in (20), and take in (20) σ1,k for k ∈ N such that σ1,k < σ2
instead of σ1. Tending k to +∞, we get the equality

∫
Ω
|w(x, σ2)|2 dx = 0. Since σ2 ∈ S

is arbitrary, we obtain w(x, t) = 0 for a.e. (x, t) ∈ Q, that contradicts to our assumption.
Therefore, a weak solution of problem (6), (7) is unique.
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Second step (existence of solution). For each m ∈ N denote Qm = Ω × (−m, 0], τm =

min
−m≤t≤0

{t− τ(t)}. It is clear that τm ≤ −m. Denote fi,m(·, t) :=

{
fi(·, t), −m < t ≤ 0;

0, t ≤ −m,
and

consider the problem: to find a function um ∈ W̃ 1,0
p(·)(Qm)∩C([−τm, 0];L2(Ω)), which satisfies

the initial condition

um(x, t) = 0, (x, t) ∈ Ω× [τm,−m] (21)

(if τm = −m then [τm,−m] := {−m}) and equation (6) in Qm in the sense of integral
equality∫∫

Qm

{ n∑
i=1

ai(x, t, um,∇um)vxi
φ+ a0(x, t, um,∇um)vφ+ vφ

t∫
t−τ(t)

c(x, t, s, um(x, s)) ds−

−umvφ′
}
dxdt =

∫∫
Qm

{ n∑
i=1

fi,mvxi
φ+ f0,mvφ

}
dxdt, v ∈ Vp, φ ∈ C1

c (−m, 0). (22)

Existence and uniqueness of solution of this problem follows from results of the paper [11].
For each m ∈ N we extend um by 0 on all Ω× R and denote this extension as um.

Now we shall get estimates of um for each m ∈ N. Firstly, note that for each m ∈ N
function um belongs to W̃ 1,0

p(·)(Q) ∩ L2(Q) ∩ C(S;L2(Ω)) and satisfies integral equality (11)
with fi,m instead of fi, i.e., the following equality is correct∫∫

Q

{ n∑
i=1

ai(x, t, um,∇um)vxi
φ+ a0(x, t, um,∇um)vφ+ vφ

t∫
t−τ(t)

c(x, t, s, um(x, s)) ds−

−umvφ′
}
dxdt =

∫∫
Q

{ n∑
i=1

fi,mvxi
φ+ f0,mvφ

}
dxdt, v ∈ Vp(Ω), φ ∈ C1

c (−∞, 0). (23)

Further we need Young’s inequality in the form

ab ≤ ε|a|r(x) + ε
− 1

r−−1 |b|r′(x) for a.e. x ∈ Ω, a, b ∈ R, 0 < ε ≤ 1, (24)

where r ∈ L∞(Ω), r(x) > 1, r′(x) := r(x)/(r(x)− 1) for a.e. x ∈ Ω, r− := ess inf
x∈Ω

r(x) > 1.

Applying Lemma 1, with θ(t) = 2, σ1, σ2 ⊂ S, (σ1 < σ2) to equality (23), we obtain∫
Ω

|um(x, σ2)|2 dx−
∫
Ω

|um(x, σ1)|2 dx+ 2

σ2∫
σ1

∫
Ω

[ n∑
i=0

ai(um)∂ium

]
dxdt+

+2

σ2∫
σ1

∫
Ω

um

[ t∫
t−τ(t)

c(um)(x, t, s)ds
]
dxdt = 2

σ2∫
σ1

∫
Ω

{ n∑
i=0

fi,m∂ium

}
dxdt. (25)

Applying inequality (24), the following estimation can be obtained
σ2∫

σ1

∫
Ω

{ n∑
i=0

fi,m∂ium

}
dxdt ≤ ε

σ2∫
σ1

∫
Ω

{ n∑
i=0

|∂ium(x, t)|pi(x)
}
dxdt+
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+

σ2∫
σ1

∫
Ω

{ n∑
i=0

ε
− 1

p−
i

−1 |fi(x, t)|p
′
i(x)

}
dxdt. (26)

Analogically as inequality (19) has been obtained (using (10) instead of condition (C2)), we
can get

∣∣∣ σ2∫
σ1

um(x, t)

t∫
t−τ(t)

c(um)(x, t, s)dsdt
∣∣∣ ≤ Lτ+

(
2

σ2∫
σ1

|um(x, t)|2dt+
σ1∫

σ1−τ+

|um(x, t)|2dt
)
. (27)

From conditions (A1), (A3) we have

σ2∫
σ1

∫
Ω

[ n∑
i=0

ai(um)∂ium

]
dxdt ≥

σ2∫
σ1

∫
Ω

[
K1

n∑
i=0

|∂iu|pi(x) +K2|u|2
]
dxdt. (28)

From inequality (25), using estimates (26)–(28) and taking σ1 < −m, we obtain

∫
Ω

|um(x, σ2)|2 dx+ 2(K1 − ε)

σ2∫
σ1

∫
Ω

{ n∑
i=0

|∂ium(x, t)|pi(x)
}
dxdt+

+2
(
K2 − 2Lτ+

) σ2∫
σ1

∫
Ω

|um(x, t)|2dxdt ≤ 2

σ2∫
σ1

∫
Ω

{ n∑
i=0

ε
− 1

p−
i

−1 |fi,m(x, t)|p
′
i(x)

}
dxdt. (29)

Taking ε = 1
2
min{K1, 1} and using (12), from (29) we have

sup
σ∈S

∫
Ω

|um(x, σ)|2 dx+ C4

∫∫
Q

{ n∑
i=0

|∂ium(x, t)|pi(x) + |um(x, t)|2
}
dxdt ≤

≤ C5

∫∫
Q

{ n∑
i=0

|fi,m(x, t)|p
′
i(x)

}
dxdt, (30)

where C4 and C5 are positive constants depending only on K1, K2, L, τ
+ and p−i (i = 0, n).

According to definition of fi,m from (30) we have

sup
σ∈S

∫
Ω

|um(x, σ)|2 dx+
∫∫
Q

{ n∑
i=0

|∂ium(x, t)|pi(x) + |um(x, t)|2
}
dxdt ≤

≤ C6

∫∫
Q

{ n∑
i=0

|fi(x, t)|p
′
i(x)

}
dxdt, (31)

where C6 > 0 is a positive constant, depending only on τ+, K1, K2, L and pi (i = 0, n).
Let us show that {um} is a Cauchy sequence. Taking arbitrary k, l ∈ N such that k < l

and considering difference between uk and ul, similarly as estimate (30), for any σ ∈ S such
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that −k ≤ σ ≤ 0 one can obtain∫
Ω

|uk(x, σ)− ul(x, σ)|2 dx+
σ∫

−l

∫
Ω

{ n∑
i=0

|∂iuk − ∂iul|pi(x) + |uk − ul|2
}
dxdt ≤

≤ C7

−k∫
−l

∫
Ω

n∑
i=0

|fi,k(x, t)− fi,l(x, t)|p
′
i(x)dxdt, (32)

where C7 is a positive constant independent of k, l.
The condition fi ∈ Lp′i(·)(Q) (i = 0, n) implies that the right-hand side of inequality (32)

tends to zero when k and l tend to +∞. This means that the sequence {um}∞m=1 is a Cauchy
sequence in the space W̃ 1,0

p(·)(Q)∩L2(Q)∩C(S;L2(Ω)). Consequently, there exists the function
u ∈ W̃ 1,0

p(·)(Q) ∩ L2(Q) ∩ C(S;L2(Ω)) such that

um −→
m→∞

u strongly in W̃ 1,0
p(·)(Q) ∩ L2(Q) ∩ C(S;L2(Ω)). (33)

From condition (C2), Fubini Theorem, Cauchy-Schwarz inequality and (33) we have∫∫
Q

∣∣∣ t∫
t−τ(t)

c(um)(x, t, s)ds−
t∫

t−τ(t)

c(u)(x, t, s)ds
∣∣∣2dxdt ≤ τ+

0∫
−∞

∫
Ω

( t∫
t−τ+

|c(um)(x, t, s)−

−c(u)(x, t, s)|2ds
)
dxdt ≤ L2τ+

∫
Ω

( 0∫
−∞

t∫
t−τ+

|um(x, s)− u(x, s)|2ds dt
)
dx ≤

≤ L2τ+
∫
Ω

0∫
−∞

s+τ+∫
s

|um(x, s)− u(x, s)|2dt dsdx = L2τ+2

∫∫
Q

|um(x, t)− u(x, t)|2dtdx −→
m→∞

0.

Thus, we obtain
t∫

t−τ(t)

c(um)ds −→
m→∞

t∫
t−τ(t)

c(u)ds strongly in L2(Q). (34)

From condition (A2), and estimate (31) we have that the following estimate is correct∫∫
Q

|ai(um)|p
′
i(x) dxdt ≤ C10

∫∫
Q

( n∑
i=0

|∂ium|pi(x) + |hi|p
′
i(x)

)
dxdt ≤ C11, (35)

where C10 and C11 are positive constants independent of m.
Hence, from (35) we obtain that {ai(um)}∞m=1 is bounded in Lp′i(·)(Q) for each m ∈

{0, . . . , n}. This and (33) yield that there exists a subsequence of {um}∞m=1 (denoted also by
{um}∞m=1) and functions χi ∈ Lpi(·)(Q) (i = 0, n) such that

∂ium −→
m→∞

∂iu, a.e. on Q, i = 0, n, (36)

ai(um) −→
m→∞

χi weakly in Lpi(·)(Q), i = 0, n. (37)
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Condition (A1) and (36) yield ai(um) −→
m→∞

ai(u) a.e. on Q, i = 0, n. From this relation and
(37), according to [30, Lemma 1.3], it follows that

ai(um) −→
m→∞

ai(u) weakly in Lpi(·)(Q), i = 0, n. (38)

Let us show that the function u is a weak solution of problem (6), (7). For this purpose,
we let m→ ∞ in identity (23), taking into account (33), (38), (34) and the definition of the
functions fi,m (i = 0, n). As a result we obtain identity (11). Hence, we have proven that u
is a weak solution of problem (6), (7).

Third step (correctness of the estimate). From (31) and (33) it follows that estimate (13)
is valid. Hence, we have proved Theorem 1.

REFERENCES

1. Alkhutov Y., Antontsev S., Zhikov V., Parabolic equations with variable order of nonlinearity, Collection
of works of Institute of Mathematics NAS of Ukraine, 6 (2009), 23–50.

2. Antontsev S., Shmarev S., Extinction of solutions of parabolic equations with variable anisotropic nonli-
nearities, Proceedings of the Steklov Institute of Mathematics, 261 (2008), 11–21.

3. Antontsev S., Shmarev S., Evolution PDEs with nonstandard growth conditions. Existence, uni-
queness, localization, blow-up, Atlantis Studies in Differential Equations, 4, Atlantis Press, Paris, 2015,
xviii+409 p.
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