I. E. Chyzhykov, M. A. Voitovych

ON ASYMPTOTIC BEHAVIOR OF THE pTH MEANS OF THE GREEN POTENTIAL FOR $0 < p \leq 1$

1. Introduction and main result. For $n \in \mathbb{N}$, let \mathbb{C}^n denote the n-dimensional complex space with the inner product

$$\langle z,w \rangle = \sum_{j=1}^{n} z_j \overline{w}_j, \quad z, w \in \mathbb{C}^n.$$

Let B denote the unit ball $\{z \in \mathbb{C}^n: |z| < 1\}$ with the boundary $S = \{z \in \mathbb{C}^n: |z| = 1\}$, where $|z| = \sqrt{\langle z,z \rangle}$.

For $z, w \in B$, define the involutive automorphism φ_w of the unit ball B given by

$$\varphi_w(z) = \frac{w - P_w z - (1 - |w|^2)^{1/2} Q_w z}{1 - \langle z, w \rangle},$$

where $P_0 z = 0$, $P_w z = \frac{\langle z, w \rangle}{|w|^2} w$, $w \neq 0$, is the orthogonal projection of \mathbb{C}^n onto the subspace generated by w and $Q_w = I - P_w$. We note that ([10, p.11])

$$1 - |\varphi_w(z)|^2 = \frac{(1 - |w|^2)(1 - |z|^2)}{|1 - \langle z, w \rangle|^2}. \quad (1)$$

The invariant Laplacian $\tilde{\Delta}$ on B is defined by

$$\tilde{\Delta} f(a) = \Delta(f \circ \varphi_a)(0),$$

where $f \in C^2(B)$, $\Delta = 4 \sum_{i=1}^{n} (\partial^2/\partial z_i \partial \overline{z}_i)$ is the ordinary Laplacian. The operator $\tilde{\Delta}$ is invariant with respect to any holomorphic automorphism of B, i.e., $\tilde{\Delta}(f \circ \psi) = (\tilde{\Delta} f) \circ \psi$ for all $\psi \in M$, the group of holomorphic automorphisms of B ([8, Chap.4], [10]).

The Green’s function for the invariant Laplacian is defined by $G(z, w) = g(\varphi_w(z))$, where

$$g(z) = \frac{n+1}{2n} \int_{|z|^2}^{1} (1 - t^2)^{n-1} t^{-2n+1} dt \quad (10, \text{Chap.6.2}).$$

2010 Mathematics Subject Classification: 31B25; 31C05.

Keywords: Green potential; unit ball; invariant Laplacian; M-subharmonic function; Riesz measure.

doi:10.15330/ms.46.2.159-170
If μ is a nonnegative Borel measure on B, the function G_μ defined by

$$G_\mu(z) = \int_B G(z, w) d\mu(w)$$

is called the (invariant) Green potential of μ, provided $G_\mu \not\equiv +\infty$. It is known that ([10, Chap. 6.4]) the condition $G_\mu \not\equiv +\infty$ is equivalent to

$$\int_B (1 - |w|^2)^n d\mu(w) < \infty. \quad (2)$$

The Green potential is closely connected to the notion of an M-subharmonic function ([10, Chap. 3]). A function u on B is called M-harmonic if $u \in C^2(B)$ and $\tilde{\Delta} u = 0$. A function u on B is called M-subharmonic if it is upper semicontinuos and $\tilde{\Delta} u \geq 0$ in the sense of distributions. In particular, $-G_\mu$ is M-subharmonic. Note that in the case $n = 1$ the classes of M-subharmonic functions and subharmonic functions coincide.

Let u be a measurable function locally integrable on B. For $0 < p < \infty$ we define

$$m_p(r, u) = \left(\int_S |u(r, \xi)|^p d\sigma(\xi) \right)^{1/p},$$

where $d\sigma$ is the Lebesgue measure on S normalized so that $\sigma(S) = 1$.

The following Riesz Decomposition Theorem holds.

Theorem A ([11]). Suppose that u is M-subharmonic in B and

$$\sup_{1/2 \leq r < 1} m_1(r, u) < \infty.$$

Let μ be the Riesz measure of u in B with $d\mu(z) = \tilde{\Delta} u(z)(1 - |z|^2)^{-n-1} dV(z)$, where V is the Lebesgue measure on B. Then there exists a signed Borel measure ν on S such that for all $z \in B$

$$u(z) = P[\nu](z) - G_\mu(z) \quad (3)$$

where

$$P[\nu](z) = \int_S \frac{(1 - |z|^2)^n}{|1 - \langle z, \zeta \rangle|^{2n}} d\nu(\zeta)$$

is the Poisson-Stieltjes integral.

Growth of the integral $P[\nu](z)$ in the uniform metric is described in terms of smoothness properties of the measure ν in [1] for $n = 1$, and in [4] for arbitrary $n \in \mathbb{N}$. Growth of $m_p(r, P[\nu])$ for $n = 1$ and $p \geq 1$ is described in [15].

In the case $n > 1$, sharp estimates of the growth rate of $m_p(r, G_\mu)$ for the whole class of Borel measures satisfying (2) are proved by M. Stoll in [9]. The case $n = 1$ is studied much more deeper, see e.g. [12, 13, 14]).

Theorem B ([9]). Let G_μ be the Green potential on B.

1. If $1 \leq p < \frac{2n-1}{2(n-1)}$, then

$$\lim_{r \to 1-} (1 - r^2)^{(n-1)/p} m_p(r, G_\mu) = 0. \quad (4)$$

2. If $n \geq 2$ and $\frac{2n-1}{2(n-1)} \leq p < \frac{2n-1}{2n-3}$, then

$$\liminf_{r \to 1-} (1 - r^2)^{(n-1)/p} m_p(r, G_\mu) = 0. \quad (5)$$
Theorem B gives the maximal growth rate of the pth mean of the Green potentials, but does not take into account particular properties of a measure μ. It appears that smoothness properties of the so called complete measure (in the sense of Grishin [7, 2, 3]) or the related measure (see [6]) of a subharmonic function allow us to describe its growth. Here we just note that in the case when $n = 1$ and $u = -G_\mu$, the complete measure $\lambda = \lambda_u$ of u is the weighted Riesz measure $d\lambda(z) = (1 - |z|) d\mu(z)$.

Define for $a, b \in \bar{B}$ the nonisotropic metric on S by $d(a, b) = |1 - \langle a, b \rangle|^{1/2}$ ([8, Chap.5.1]).

For $\xi \in S$ and $\delta > 0$ we set $C(\xi, \delta) = \{z \in B: d(z, \xi) < \delta\}$, $D(\xi, \delta) = \{z \in B: d(z, \xi) < \delta\}$, $d\lambda(z) = (1 - |z|)^n d\mu(z)$.

The growth of $m_p(r, G_\mu)$ in terms of properties of the measure μ are described in [5] for $n > 1$. One dimensional analogue has been established earlier in [3] for all $p > 1$.

Theorem C ([5]). Let $n \in \mathbb{N}$, $1 < p < \frac{2n-1}{2(n-1)}$, $0 \leq \gamma < 2n$, and let μ be a Borel measure satisfying (2). Then

$$m_p(r, G_\mu) = O \left((1 - r)^{\gamma - n} \right), \ r \uparrow 1$$

holds if and only if

$$\left(\int_S \lambda^p (C(\xi, \delta)) d\sigma(\xi) \right)^{\frac{1}{p}} = O \left(\delta^{\gamma} \right), \ 0 < \delta < 1.$$

In this paper we would like to consider the case $0 < p \leq 1$. For this interval one can obtain an analogue of necessity part of Theorem C.

Theorem 1. Let $n > 1$, $0 < p \leq 1$, $0 \leq \gamma < 2n$, and let μ be a Borel measure satisfying (2) and

$$m_p(r, G_\mu) = O \left((1 - r)^{\gamma - n} \right), \ r \uparrow 1$$

hold. Then

$$\left(\int_S \lambda^p (C(\xi, \delta)) d\sigma(\xi) \right)^{\frac{1}{p}} = O \left(\delta^{\gamma} \right), \ 0 < \delta < 1.$$

Proof. The proof repeats that of necessity in Theorem C.

The following theorem is the main result of the paper.

Theorem 2. Let $n > 1$, $0 < p \leq 1$, $0 \leq \gamma < 2n$, and let μ be a Borel measure satisfying (2) and

$$\int_S \lambda (C(\xi, \delta)) d\sigma(\xi) = O \left(\delta^{\gamma} \right), \ 0 < \delta < 1,$$

hold. Then

$$m_p(r, G_\mu) = O \left((1 - r)^{\gamma - n} \right), \ r \uparrow 1.$$

Remark 1. An example in Section 4 shows that estimate (11) is sharp for all $p \in (0, 1]$. As a corollary we obtain a criterion of the growth of $m_p(r, G_\mu)$ in terms of properties of the measure μ in the case $p = 1$.

Corollary 1. Let $n > 1$, $0 \leq \gamma < 2n$, and let μ be a Borel measure satisfying (2). Then

$$\int_S \lambda(C(\xi, \delta)) \, d\sigma(\xi) = O(\delta^n), \ 0 < \delta < 1,$$

holds if and only if

$$m_1(r, G_\mu) = O((1 - r)^{\gamma - n}), \ r \uparrow 1.$$

Remark 2. Due to Proposition 1.10 ([5]) we always have

$$\int_S \lambda(C(\xi, \delta)) \, d\sigma(\xi) = o(\delta^n), \ \delta \downarrow 0.$$

This agrees with the relation $m_1(r, G_\mu) = o(1)$, $r \uparrow 1$ as it was shown by Ulrich ([11], see also [10]).

2. Some properties of the Green’s function. The following lemma gives some basic properties of g which will be needed later.

Lemma A ([10]). Let $0 < \delta < \frac{1}{2}$ be fixed. Then g satisfies the following two inequalities:

$$g(z) \geq \frac{n + 1}{4n^2}(1 - |z|^2)^n, \ z \in B,$$

$$g(z) \leq c(\delta)(1 - |z|^2)^n, \ z \in B, |z| \geq \delta,$$

where $c(\delta)$ is a positive constant. Furthermore, if $n > 1$ then

$$g(z) \asymp |z|^{-2n+2}, \ |z| \leq \delta.$$

We need an estimate of p-means of the Green’s function for $0 < p \leq 1$. Analogues estimates for $p > 1$ are established by Stoll ([9, Lemma 5]). His proof does not work for $p \leq 1$, though we use some ideas and notation from [9].

For fixed $\delta, 0 < \delta < 1/2$, denote $B^*(z, \delta) = \{w \in B: |\varphi_w(z)| < \delta\}$ and for $0 < r < 1$ denote

$$E(r) = \bigcup_{t \in S} B^*(rt, \delta).$$

Lemma 1. Let $0 < p \leq 1$, $n \in \mathbb{N}$. Then there exists $r_0 \in (0, 1)$ such that for all $r \in (r_0, 1)$ and $w \in E(r)$

$$m_p(G(\cdot, w), r) \asymp (1 - r^2)^{n/p}, \ \text{if} \ p \in (0, 1] \setminus \left\{\frac{1}{2(n - 1)}\right\},$$

$$m_p(G(\cdot, w), r) = O\left((1 - r^2)^{n/p}\left(\ln \frac{1}{1 - r}\right)^{1/p}\right), \ \text{if} \ p = \frac{1}{2(n - 1)}, \ n > 1.$$

Proof. Let $w \in E(r), |w| = \rho$. Since σ is invariant under the group of unitary transformations of \mathbb{C}^n,

$$\int_S g(\varphi_w(rt))^pd\sigma(t) = \int_S g(\varphi_{we}(rt))^pd\sigma(t) = \int_S g(\varphi_{re}(\rho t))^pd\sigma(t),$$

where $e = (1, 0, \ldots, 0) \in \mathbb{C}^n$.

For $0 < r, \rho < 1$, and fixed $\delta \in (0, \frac{1}{2}]$, let $N^p = \{t \in S: \rho t \in B^*(re, \delta)\}$.

For $t \in S \setminus N^p_r$, we have ([9, p. 491])

$$\int_S g(\varphi_{re}(\rho t))p\sigma(t) \leq c(1 - \rho^2)^p(1 - r^2)^{-n(p-1)} \leq c(1 - r^2)^n. \quad (16)$$

Also, for $c > 0$, let $Q^c_r = \{ se^{i\theta} : 0 < 1 - s < c(1 - r^2), |\theta| < c(1 - r^2) \}$ and $Q^c_r = \{ t = (t_1, \ldots, t_n) \in S : t_1 \in Q^c_r \}$.

By the definition of N^p_r, one has $|\varphi_{re}(\rho t)| < \delta$ for $t \in N^p_r$. Hence by (15) and (1)

$$g(\varphi_{re}(\rho t)) \approx |\varphi_{re}(\rho t)|^{-2(n-1)} = c_1 \frac{|1 - r\rho t_1|^{2(n-1)}}{(1 - r^2)(1 - \rho^2))^{n-1}}, \quad (17)$$

where $c_1 = c_1(n)$.

It is known that ([9, Lemma 3]) there exist $c_2 = c_2(\delta)$ and $r(\delta)$ such that $N^p_r \subset Q^c_r$ for all ρ with $\rho e \in B^*(re, \delta)$, and all $r > r(\delta)$. Moreover, one can choose $r_0 \in (0, 1)$ such that the inclusion holds for all $r \in (r_0, 1)$ and $0 < \delta \leq \frac{1}{2}$.

By (1), $\rho t \in B^*(re, \delta)$ if and only if $(1 - r^2)(1 - \rho^2) > (1 - \delta^2)(1 - r\rho t_1)^2$, i.e.

$$|1 - r\rho t_1|^2 \leq \frac{1}{1 - \delta^2}(1 - r^2)(1 - \rho^2) \leq \frac{4}{3}(1 - r^2)(1 - \rho^2).$$

Since $t \in N^p_r$, we can apply the previous inequality to deduce

$$\int_{N^p_r} g(\varphi_{re}(\rho t))p\sigma(t) \leq c_3(1 - r^2)^p(1 - \rho^2)^p \times$$

$$\times \int_{Q^c_r} (|1 - r\rho t_1|^2 - (1 - r^2)(1 - \rho^2))^{-p(n-1)} d\sigma(t) =: c_3(1 - r^2)^p(1 - \rho^2)^p I_r. \quad (18)$$

Since ([9, p. 488])

$$|1 - r\rho e^{i\theta}|^2 - (1 - r^2)(1 - \rho^2) = (\rho - r)^2 + 2r(1 - s) - r^2\rho^2(1 - s^2) + 4r\rho s\sin^2\frac{\theta}{2} \geq$$

$$\geq (r - \rho)^2 + (1 - s)(1 - r) + \frac{\theta^2}{\pi^2}, \quad \min\{\rho r, s\} \geq \frac{1}{2}, \quad (19)$$

by formula 1.4.5(2) in [8],

$$I_r = c_4(n) \int_{Q^c_r} (1 - s^2)^{-n-2}(|1 - r\rho e^{i\theta}|^2 - (1 - r^2)(1 - \rho^2))^{-p(n-1)} ds d\theta \leq$$

$$\leq c_5 \int_{1-c_2(1-r^2)} \left[c_2(1-r^2) \int_0^{(1-s)(1-r)} (1 - s)^{n-2} \left[(r - \rho)^2 + (1 - s)(1 - r) + \frac{\theta^2}{\pi^2} \right]^{-p(n-1)} d\theta \right] ds.$$

So

$$I_r \leq c_5 \int_{1-c_2(1-r^2)} (1 - s)^{n-2} \left[\pi \sqrt{(1-s)(1-r)} \int_0^{\frac{(1-s)(1-r)}{\pi^2}} \left((1 - s)(1 - r) + \frac{\theta^2}{\pi^2} \right)^{-p(n-1)} d\theta +$$
Therefore from the latter inequalities, (16) and (18) we get

\[p \leq c_5 \int_{1-c_2(1-r^2)}^{1} (1-s)^{n-2} \left[\int_{0}^{\pi \sqrt{(1-s)(1-r)}} \left((1-s)(1-r) \right)^{-p(n-1)} d\theta \right] ds + \left[\int_{\pi \sqrt{(1-s)(1-r)}}^{c(1-r^2)} \left(\frac{\theta}{\pi} \right)^{-2p(n-1)} d\theta \right] ds. \]

Direct calculation shows that for \(0 \leq 1-s \leq c_2(1-r^2) \)

\[\left| \int_{\pi \sqrt{(1-s)(1-r)}}^{c(1-r^2)} \theta^{-2p(n-1)} d\theta \right| \leq \begin{cases} c_6 (1-r)^{1-2p(n-1)}, & p \in (0, 1) \setminus \left\{ \frac{1}{2(n-1)} \right\}; \\ c_6 \ln \frac{1}{1-r}, & p = \frac{1}{2(n-1)}. \end{cases} \]

Let us consider three cases. Firstly, let \(0 < p < \frac{1}{2(n-1)} \). Since \(0 < 1-s < 2c_2(1-r) \), we get

\[I_r \leq c_7 \int_{1-c_2(1-r^2)}^{1} (1-s)^{n-2} (1-r)^{1-2p(n-1)} ds \leq c_8 (1-r^2)^{n-2p(n-1)}. \]

Now let \(1 \geq p > \frac{1}{2(n-1)} \). Then

\[I_r \leq c_9 \int_{1-c_2(1-r^2)}^{1} \left((1-s)^{n-2} (1-r)^{1-2p(n-1)} + (1-s)^{n-2} (1-r)^{1-2p(n-1)} \right) ds \leq c_{10} (1-r^2)^{n-2p(n-1)}. \]

Finally, if \(p = \frac{1}{2(n-1)} \), \(n > 1 \), then

\[I_r \leq c_9 \int_{1-c_2(1-r^2)}^{1} (1-s)^{n-2} \left(1 + \ln \frac{1}{1-r} \right) ds \leq c_{11} (1-r^2)^{n-1} \ln \frac{1}{1-r}. \]

Therefore from the latter inequalities, (16) and (18) we get

\[m_p(G(\cdot, w), r) \leq c_{11} (1-r^2)^{n-1} \left(1 - \rho^2 \right)^{p(n-1)} (1-r^2)^{n-2p(n-1)} \left(1 - \rho^2 \right)^{1/p} = \]

\[= c_{11} \frac{(1-\rho^2)^{n-1}}{(1-r^2)^{n-1-n/p}} \leq c(n, p) (1-r^2)^{n/p}, \quad p \neq \frac{1}{2(n-1)}, \]

\[m_p(G(\cdot, w), r) \leq c_{12} \left((1-r^2)(1-\rho^2) \right)^{\frac{1}{2}} (1-r^2)^{n-1} \ln \frac{1}{1-r} \right)^{1/p} \]

\[\leq c(n)(1-r^2)^{n/p} \ln^{1/p} \frac{1}{1-r}, \quad p = \frac{1}{2(n-1)}. \]
The upper estimates are proved. Let us prove the lower estimate. By (17) we have

\[
\int_S g(\varphi_{re}(\rho t))^p \, d\sigma(t) \geq \tilde{c}_1 \int_{Q^c_r} \left| \varphi_{re}(\rho t) \right|^{-2p(n-1)} \, d\sigma(t) = \\
= \tilde{c}_1 \int_{Q^c_r} \frac{|1 - r\rho t_1|^{2p(n-1)}}{(1 - r^2)(1 - \rho^2)^{p(n-1)}} \, d\sigma(t) \geq \\
\geq \tilde{c}_1 \int_{Q^c_r} \frac{(1 - r\rho)^{2p(n-1)}}{(1 - r^2)(1 - \rho^2)^{p(n-1)}} \, d\sigma(t).
\]

Equality (19) implies

\[
|1 - r\rho se^{i\theta}|^2 - (1 - r^2)(1 - \rho^2) \leq (r - \rho)^2 + 2(1 - s)(1 - r\rho) + \theta^2 \leq \tilde{c}_2(1 - r)^2, \quad se^{i\theta} \in Q^c_r.
\]

Then

\[
\int_S g(\varphi_{re}(\rho t))^p \, d\sigma(t) \geq \tilde{c}_3 |1 - r\rho|^{2p(n-1)} \times \\
\times \int_{1-c(1-r^2)}^1 \left[\int_0^1 (1 - s^2)^n \cdot (1 - r\rho se^{i\theta})^2 \, ds \right] d\theta \geq \\
\geq \tilde{c}_4 (1 - r)^{2p(n-1)} \int_{1-c(1-r^2)}^1 \left[\int_0^1 (1 - s^2)^n (1 - r - 2p(n-1)) \, ds \right] d\theta = \tilde{c}_5 (1 - r^2)^n.
\]

So, \(m_p(G(\cdot, w), r) \geq \tilde{c}_6 (1 - r^2)^{n/p}, \ p \in (0; 1] \setminus \left\{ \frac{1}{2(n-1)} \right\}. \)

\[\square\]

3. Proof of Theorem 2. Since, by the convexity, \(m_p(r, G_\mu) \leq m_1(r, G_\mu), \ 0 < p \leq 1, \) it is enough to prove (11) for \(p = 1. \) We follow the scheme from [5].

Let us estimate the absolute values of

\[
u_1(z) := \int_{B^*(z, \frac{1}{4})} G(z, w) \, d\mu(w) \text{ and } \nu_2(z) := \int_{B \setminus B^*(z, \frac{1}{4})} G(z, w) \, d\mu(w).
\]

We start with \(u_1. \) By definition

\[
0 \leq u_1(z) = \int_{B^*(z, \frac{1}{4})} G(z, w) \, d\mu(w) = \int_{B^*(z, \frac{1}{4})} g(\varphi_w(z)) \, d\mu(w).
\]

By (15) we have \(g(z) \leq c |z|^{-2n+2} \) for \(|z| \leq \frac{1}{4} \) and some positive constant \(c. \) Thus,

\[
|u_1(z)| \leq c \int_{B^*(z, \frac{1}{4})} |\varphi_w(z)|^{-2n+2} \, d\mu(w).
\]

Denote \(z = r\xi, \) where \(r = |z|, \ \frac{1}{2} < r < 1 \) and \(w = |w|\eta, \ \xi, \eta \in S. \) Let

\[
K(z, \sigma_1, \sigma_2) = \{ w \in B : |r - |w|| \leq \sigma_1, d(\xi, \eta) \leq \sigma_2 \}.
\]
In [5] it is proved that
\[B^* \left(z, \frac{1}{4} \right) \subset K(z, c_{13}(1 - r), c_{14}(1 - r)^{\frac{3}{2}}) \] (20)

where \(c_{13} = \frac{2}{3} \) and \(c_{14} = 4\sqrt{2} \). We denote

\[K(z) := K \left(z, \frac{2}{3}(1 - r), 4\sqrt{2}(1 - r)^{\frac{3}{2}} \right), \quad \tilde{K}(z) := K \left(z, \frac{2}{3}(1 - r), 8\sqrt{2}(1 - r)^{\frac{3}{2}} \right). \]

The inclusion (20) implies

\[I_1 := \int_{\nu} |u_1(r\xi)| d\sigma(\xi) \leq c_{15} \int_{\nu} \int_{B^*(r\xi, \frac{1}{4})} |\varphi_w(r\xi)|^{-(2n-2)} d\mu(w) d\sigma(\xi) \leq c_{15} \int_{\nu} \int_{K(r\xi)} \frac{d\mu(w)}{|\varphi_w(r\xi)|^{2n}} d\sigma(\xi) \]

where \(c_{15} = c_{15}(p) \). Then, by Fubini’s theorem we deduce \((z = r\xi, \ w = |w|\eta)\)

\[I_1 \leq c_{16}(n, p) \int_{|w| - r < \frac{2}{3}(1 - r)} \int_{\eta \in S, \ |\eta - r| < 4\sqrt{2}(1 - r)^{1/2}} \frac{d\sigma(\xi)}{|\varphi_w(r\xi)|^{2n}} d\mu(|w|\eta) \leq c_{16}(p, n) \int_{|w| - r < \frac{2}{3}(1 - r)} \int_{S} \frac{d\sigma(\xi)}{|\varphi_w(r\xi)|^{2n}} d\mu(w). \] (21)

Applying to (21) subsequently (1), (14) and Lemma 1, we obtain that for \(0 < p \leq 1 \)

\[\int_{S} \frac{d\sigma(\xi)}{|\varphi_w(r\xi)|^{2n}} = \int_{S} \frac{d\sigma(\xi)}{|\varphi_r(\xi)|^{2n}} \leq \int_{S} g(\varphi_r(\xi)) d\sigma(\xi) \leq c_{17}(1 - r^2)^n, \quad \frac{1}{2} < r < 1. \]

Substituting the estimate of the inner integral into (21) we get

\[I_1 \leq c_{18}(1 - r)^n \int_{|w| - r < \frac{2}{3}(1 - r)} d\mu(|w|\eta). \] (22)

We need the following lemma that plays a key role in the proof of Theorem C.

Lemma B ([5]). Let \(\nu \) be a finite positive Borel measure on \(S \), \(0 < \delta < \frac{1}{2} \), and \(p \geq 1 \). Then

\[\int_{S} \nu^{p-1}(D(\xi, \delta)) d\nu(\xi) \leq \frac{N_p}{\delta^{2n}} \int_{S} \nu^p(D(\xi, \delta)) d\sigma(\xi), \]

where \(N \) is a positive constant independent of \(p \) and \(\delta \).

To obtain the final estimate of \(I_1 \), for a fixed \(r \in (\frac{1}{2}, 1) \), we define the measure \(\nu_1 \) on the balls \(\{D(\eta, t): \eta \in S, t > 0\} \) by

\[\nu_1(D(\eta, t)) = \lambda \left(\left\{ \rho\xi \in B: |\rho - r| < \frac{2}{3}(1 - r), d(\xi, \eta) < t \right\} \right). \]
It can be expanded to the family of all Borel sets on \(B \) in the standard way. It is clear that

\[
\nu_1(D(\eta, t)) \asymp (1 - r)^m \mu \left(\left\{ \rho \zeta \in B : |\rho - r| < \frac{2}{3} (1 - r), d(\zeta, \eta) < t \right\} \right).
\]

By using of (22) and Lemma B we get

\[
I_1 \leq c_{19} \int_{||w|-r|<\frac{2}{3}(1-r)} d\lambda(|w|) = c_{19} \int_S d\nu_1(\eta) \leq \frac{c_{19}N}{(1-r)^n} \int_S \nu_1(D(\eta, 8\sqrt{2}(1-r)^{\frac{1}{4}})) \, d\sigma(\eta) = \frac{c_{20}(n, p)}{(1-r)^n} \int_S \lambda(\tilde{K}(r\eta)) \, d\sigma(\eta).
\]

Note that if \(\rho \zeta \in \tilde{K}(r\eta) \) then

\[
|1 - \langle \rho \zeta, \eta \rangle| \leq |1 - \langle \zeta, \eta \rangle| + (1 - \rho) |\langle \zeta, \eta \rangle| \leq (4c_{14}^2 + c_{13} + 1)(1 - r) = c_{21}(1 - r).
\]

Hence,

\[
I_1 \leq \frac{c_{20}}{(1-r)^n} \int_S \lambda(C(\eta, c_{21}(1-r))) \, d\sigma(\eta).
\]

By the assumption of the theorem we deduce

\[
I_1 = O((1 - r)^{\gamma - n}), \ r \uparrow 1.
\]

Let us estimate

\[
u_2(z) = \int_B G(z, w)(1 - |w|)^{-n} \, d\tilde{\lambda}(w)
\]

where \(d\tilde{\lambda}(w) = (1 - |w|)^n \chi_{B(1, 2)}(w) \, d\mu(w) \), \(\chi_E \) is the characteristic function of a set \(E \).

We may assume that \(|z| \geq \frac{1}{2} \).

We denote

\[
E_k = E_k(z) = \left\{ w \in B : \left| 1 - \left\langle \frac{z}{|z|}, w \right\rangle \right| < 2^{k+1}(1 - |z|) \right\}, \ k \in \mathbb{Z}_+.
\]

Since \(|1 - \langle z, w \rangle| \geq \frac{1}{2} |1 - \langle \frac{z}{|z|}, w \rangle| \), one has that for \(w \in E_{k+1} \setminus E_k, |1 - \langle z, w \rangle| \geq 2^{k-1}(1 - |z|) \).

Combining Lemma A with the equality in (1) for \(z \in B \) such that \(|z| \geq \frac{1}{2} \) we get that

\[
0 \leq G(z, w) \leq c_{22} \left(\frac{(1 - |w|^2)(1 - |z|^2)}{|1 - \langle z, w \rangle|^2} \right)^n
\]

holds. So

\[
|\nu_2(z)| \leq c_{22} \int_B \left(\frac{(1 + |w|)(1 - |z|^2)}{|1 - \langle z, w \rangle|^2} \right)^n \, d\tilde{\lambda}(w) \leq \sum_{k=1}^{\frac{1}{|\log_2 2^{1/\gamma}|}} c_{22} \int_E (2^{2(k-1))(1 - |z|^2)} \, d\tilde{\lambda}(w) + c_{22} \int_{E_1} \frac{(1 + |w|)(1 - |z|^2)}{(1 - |z|^2)} \, d\tilde{\lambda}(w) \leq \sum_{k=1}^{\infty} \int_{E_{k+1} \setminus E_k} \frac{4^n c_{22}}{(2^{2(k-1))(1 - |z|^2)} \, d\tilde{\lambda}(w) + \int_{E_1} \frac{4^n c_{22}}{(1 - |z|^2)} \, d\tilde{\lambda}(w) \leq
\]

\[
\frac{4^n c_{22}}{(1 - |z|^2)} \, d\tilde{\lambda}(w) \leq
\]

\[
\frac{4^n c_{22}}{(1 - |z|^2)} \]
Using Lemma 1 for p and for some $C > 0$ Proposition 1.

4. An example.

Proposition 1. For $n > 1$, $0 < p \leq 1$, $n < \gamma < 2n$, there exists a Borel measure μ on B satisfying (2) and such that

$$G_{\mu}(z) = O \left((1 - |z|)^{\gamma-n} \right), \quad |z| \uparrow 1$$

and for some $C > 0$

$$\lambda(C(\xi, \delta)) \geq C\delta^{\gamma}, \quad 0 < \delta < 1.$$ (27)

Proof. We define $d\mu(z) = \frac{dV(z)}{(1-|z|)^{2n+1-\gamma}}$, where V is the Lebesgue measure on B.

We write

$$G_{\nu}(z) = \int_B G(z, w) d\mu(w) = \int_{B^*(z, \frac{1}{4})} G(z, w) d\mu(w) + \int_{B^c(z, \frac{1}{4})} G(z, w) d\mu(w) =: J_1 + J_2.$$

Since, by (20) $1 - |w| \asymp 1 - |z|$ holds for $w \in B^*(z, \frac{1}{4})$, we get

$$J_1 \leq c_{27} \int_{B^*(z, \frac{1}{4})} \frac{G(z, w) dV(w)}{(1-|z|)^{2n+1-\gamma}} \leq \frac{c_{27}}{(1-|z|)^{2n+1-\gamma}} \int_{r-1}^{r+c_1(1-r)} \int_S G(z, \rho \eta) d\sigma(\eta) \rho^{2n-1} \rho.$$

Using Lemma 1 for $p = 1$, we obtain

$$J_1 \leq \frac{c_{28}}{(1-|z|)^{2n+1-\gamma}} \int_{r-1}^{r+c_1(1-r)} (1-\rho)^n \rho^{2n-1} d\rho \leq \frac{c_{29}}{(1-\rho)^{n-\gamma}}.$$

For $w \in B \setminus B^*(z, \frac{1}{4})$ we have (see (1))

$$0 \leq G(z, w) \leq c \left(\frac{(1-|w|^2)(1-|z|^2)}{|1-\langle z, w \rangle|^2} \right)^n.$$

Therefore

$$\int_S |u_2(r\xi)| d\sigma(\xi) \leq \frac{c_{23}}{(1-r)^n} \sum_{k=1}^{\infty} \frac{\tilde{\lambda}(E_k(r\xi))}{2^{2n(k-2)}} = \frac{c_{24}}{(1-r)^n} \sum_{k=1}^{\infty} 2^{\gamma(k+1)(1-r)^{\gamma}}$$

$$\leq \frac{c_{25}}{(1-r)^n} \sum_{k=1}^{\infty} 2^{\gamma(k+1)(1-r)^{\gamma}} = \frac{c_{26}(n, \gamma)}{(1-r)^{n-\gamma}}.$$

Hence

$$m_p(r, G_{\mu}) \leq m_1(r, G_{\mu}) \leq \int_S |u_1(r\xi)| d\sigma(\xi) + \int_S |u_2(r\xi)| d\sigma(\xi) \leq \frac{c(n, \gamma)}{(1-r)^{n-\gamma}}.$$

4. An example.
Then by the above inequality and [8, Chap.1.4.10] it follows that
\[J_2 \leq c(1 - |z|)^n \int_B \frac{(1 - |w|^2)^{-n-1+\gamma}}{|1 - \langle z, w \rangle|^{2n}} dV(w) \leq c_30(1 - |z|)^n(1 - |z|)^{-2n+\gamma} = c_30(1 - |z|)^{\gamma - n} . \]

Thus \(m_1(r, G_\mu) = O((1 - r)^{\gamma - n}) \), \(r \uparrow 1 \).

Let us prove (27). We have \(d\lambda(w) = \frac{dV(w)}{(1 - |w|)^{n+1-\gamma}} \). Then
\[
\lambda(C(\xi, \delta)) \geq \int_{C(\xi, \delta) \cap \{ 1 - \frac{\delta}{2} \leq |w| \leq 1 - \frac{\delta}{4} \}} dV(w) \geq c \delta^{\gamma - n - 1} \delta^{n+1} = \delta^{\gamma} .
\]

The latter estimates follow from the inclusion
\[
C(\xi, \delta) \cap \left\{ 1 - \frac{\delta}{2} \leq |w| \leq 1 - \frac{\delta}{4} \right\} \supset \left\{ |w| \eta: \frac{\delta}{4} \leq 1 - |w| \leq \frac{\delta}{2}, d(\xi, \eta) \leq \sqrt{\frac{\delta}{2}} \right\} .
\]

Let us prove this. We denote \(v = (1 - \frac{\delta}{4}) \zeta \in \partial C(\xi, \delta), \zeta \in S \). Since \(\min \{ \delta(\xi, \eta): |w| \eta \in C(\xi, \delta) \cap \{ 1 - \frac{\delta}{2} \leq |w| \leq 1 - \frac{\delta}{4} \} \} \) is attained at \(v \), it is enough to estimate \(d(\xi, \zeta) \) from below.
\[
d(\xi, \zeta) = \sqrt{|1 - \langle \xi, \zeta \rangle|} = \sqrt{|1 - \langle \xi, \zeta \rangle - \langle \xi, |v| \zeta \rangle + \langle \xi, |v| \zeta \rangle|} \geq \\
\geq \sqrt{|1 - \langle \xi, |v| \zeta \rangle - |1 - \langle \xi, v \zeta \rangle - \langle \xi, |v| \zeta \rangle|} = \sqrt{\delta - \frac{\delta}{2} |(\xi, \zeta)|} \geq \sqrt{\delta} .
\]

The estimate (27) is proved.

\[\square \]

REFERENCES

2. I.E. Chyzhykov, Growth of analytic functions in the unit disc and complete measure in the sense of Grishin, Mat. Stud., 29 (2008), 35–44.

Ivan Franko National University of Lviv
chyzhykov@yahoo.com
urkevych@gmail.com

Received 2.07.2016