1. Introduction. Let f be an analytic function in the disc $\{z: |z| < R\}$, $0 < R \leq +\infty$, represented by the power series

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n. \quad (1)$$

For $r \in (0, R)$ we denote $M_f(r) = \max\{|f(z)|: |z| = r\}$, $\mu_f(r) = \max\{|a_n|r^n: n \geq 0\}$. It is well known ([1, p. 9], [2, p. 28]) that for each nonconstant entire function $f(z)$ and every $\varepsilon > 0$ there exists a set $E(\varepsilon, f) \subset [1, +\infty)$ such that Wiman’s inequality

$$M_f(r) \leq \mu_f(r)(\ln \mu_f(r))^{1/2+\varepsilon}$$

holds for all $r \in [1, +\infty) \setminus E(\varepsilon, f)$ and this set $E(\varepsilon, f)$ has finite logarithmic measure, i.e. $\int_{E(\varepsilon, f)} \frac{dr}{1-r} < +\infty$.

Let $f(z)$ be an analytic function in the unit disc $\mathbb{D} = \{z: |z| < 1\}$. For such a function $f(z)$ and every $\delta > 0$ there exists a set $E_f(\delta) \subset (0, 1)$ of finite logarithmic measure on $(0, 1)$, i.e.

$$\int_{E_f(\delta)} \frac{dr}{1-r} < +\infty,$$

such that for all $r \in (0, 1) \setminus E_f(\delta)$ the inequality

$$M_f(r) \leq \frac{\mu_f(r)}{(1-r)^{1+\delta}} \ln^{1/2+\delta} \frac{\mu_f(r)}{1-r}$$

holds ([3]). Similar inequality for analytic function in the unit disc one can find in [4].

Also in [3] it is noted that for the function $g(z) = \sum_{n=1}^{+\infty} \exp\{n^\varepsilon\} z^n$, $\varepsilon \in (0, 1)$ we have

$$\lim_{r \to 1^-} \frac{M_g(r)}{\mu_g(r) \ln^{1/2} \frac{\mu_g(r)}{1-r}} \geq C > 0.$$
2. Wiman’s type inequality for analytic functions in \mathbb{T}. We consider

$$f(z) = f(z_1, z_2) = \sum_{n+m=0}^{+\infty} a_{nm} z_1^n z_2^m$$

with the domain of convergence $\mathbb{T} = \{z \in \mathbb{C}^2 : |z_1| < 1, |z_2| < +\infty\}$.

By \mathcal{A}^2 we denote the class of analytic functions of the form (2) with the domain of convergence \mathbb{T} and $\frac{\partial}{\partial z_2} f(z_1, z_2) \neq 0$ in \mathbb{T}.

For $r = (r_1, r_2) \in T := [0, 1] \times [0, +\infty)$ and a function $f \in \mathcal{A}^2$ we denote

$$\Delta_r = \{(t_1, t_2) \in T : t_1 > r_1, t_2 > r_2\}, \quad M_f(r) = \max\{|f(z)|: |z_1| \leq r_1, |z_2| \leq r_2\},$$

$$\mu_f(r) = \max\{|a_{nm}| r_1^n r_2^m : (n, m) \in \mathbb{Z}_+^2\}, \quad \mathfrak{M}_f(r) = \sum_{n+m=0}^{+\infty} |a_{nm}| r_1^n r_2^m.$$

Let $D_f(r) = (D_{ij})$ be a 2×2 matrix such that

$$D_{ij} = r_i \frac{\partial}{\partial r_i} \left(r_j \frac{\partial}{\partial r_j} \ln M_f(r) \right) = \partial_i \partial_j \ln M_f(r), \quad \partial_i = r_i \frac{\partial}{\partial r_i}, \quad i, j \in \{1, 2\}.$$

We say that $E \subset T$ is set of *asymptotically finite logarithmic measure on T* if there exists $r_0 \in T$ such that

$$\nu_{\ln}(E \cap \Delta_{r_0}) := \iint_{E \cap \Delta_{r_0}} \frac{dr_1 dr_2}{(1 - r_1)r_2} < +\infty, \quad (E \in \Upsilon)$$

i.e. the set $E \cap \Delta_{r_0}$ is a set of *finite logarithmic measure on T*.

In [5] one can find analogues of Wiman’s inequality for analytic functions from the class \mathcal{A}^2.

Theorem 1 ([5]). Let $f \in \mathcal{A}^2$. For every $\delta > 0$ there exists a set $E = E(\delta, f) \subset \Upsilon$ such that for $r \in T \setminus E$ we obtain

$$M_f(r) \leq \mathfrak{M}_f(r) \leq \frac{\mu_f(r)}{(1 - r)^{1+\delta}} \ln^{1+\delta} \frac{\mu_f(r)}{1 - r} \ln^{1/2+\delta} r_2.$$

(3)

Also in [5] was proved that inequality (3) is sharp. In particular for some $f(z_1, z_2) \in \mathcal{A}^2$ we have

$$E = \{r \in T : M_f(r) > \frac{\mu_f(r)}{(1 - r)^{1+\delta}} \ln^{1/2+\delta} r_2 \} \not\in \mathbb{T}.$$

The aim of this paper is to prove the sharp Wiman’s inequality for random analytic functions in \mathbb{T}. We will prove that almost surely one can replace the exponent $1 + \delta$ in inequality (3) by $\frac{1}{2} + \delta$, and this exponent cannot be placed by a number smaller than $\frac{1}{2}$.

3. Wiman’s type inequality for random analytic functions in the \mathbb{T}. Let $\Omega = [0, 1]$ and P be the Lebesgue measure on \mathbb{R}. We consider the Steinhaus probability space (Ω, \mathcal{A}, P), where \mathcal{A} is the σ-algebra of Lebesgue measurable subsets of Ω. In the sequel, the notion “almost surely” will be used in the sense that the corresponding property holds almost everywhere with respect to Lebesgue measure P on Ω.

Let \(Z = Z_{nm}(t) \) be some sequence of random variables defined in this space.
Let \(X = (X_{nm}(t)) \) be multiplicative system (MS) uniformly bounded by the number 1. That is for all \(n,m \in \mathbb{N} \) and \(t \in [0,1] \) we have \(|X_{nm}(t)| \leq 1 \) for almost all \(t \in [0;1] \) and

\[
\forall (i_1, i_2, \ldots, i_n) \in \mathbb{N}^k, \ 1 \leq i_1 < i_2 < \cdots < i_k, \ : \ M(X_{i_1}X_{i_2} \cdots X_{i_k}) = 0,
\]

where \(M_\xi \) is the expected value of a random variable \(\xi \).

Let \(Z = (Z_{nm}(t)) \) be a sequence of random complex variables \(Z_{nm}(t) = X_{nm}(t) + iY_{nm}(t) \) such that both \(X = X_{nm}(t) \) and \(Y = Y_{nm}(t) \) are real MS. We consider the class of random analytic functions of the form

\[
f(z,t) = \sum_{n+m=0}^{+\infty} a_{n,m}Z_{n,m}(t)z_1^n z_2^m.
\]

For such a functions we prove following statement.

Theorem 2. Let \(f \in A^2 \), \(Z \) be a MS uniformly bounded by the number 1, \(\delta > 0 \). Then almost surely in \(t \) there exists a set \(E = E(f,t,\delta), E \subset \Upsilon \) such that for all \(r \in T \setminus E \) we have

\[
M_f(r,t) := \max\{|f(z,t)| : |z_1| \leq r_1, |z_2| \leq r_2\} \leq \frac{\mu_f(r)}{(1-r_1)^{1/2+\delta}} \ln^{1/2+\delta} \frac{\mu_f(r)}{1-r_1} \ln^{1+4+\delta} r_2. \tag{5}
\]

Lemma 1 ([6]). Let \(X = (X_{nm}(t)) \) be a MS uniformly bounded by the number 1. Then for each \(\beta > 0 \) there exists a constant \(A_\beta > 0 \), which depends only on \(\beta \) only such that for all \(N \geq 4\pi \) and \(\{c_{nm} : n+m \leq N\} \subset \mathbb{C} \) we have

\[
P\left\{ \max\left\{ \sum_{n+m=0}^{+\infty} c_{nm}X_{nm}(t)e^{im_1\psi_1}e^{im_2\psi_2} : \psi \in [0,2\pi]^2 \right\} \geq A_\beta S_N \ln^{3/2} N \right\} \leq \frac{1}{N^\beta}, \tag{6}
\]

where \(S_N^2 = \sum_{n+m=0}^{+\infty} |c_{nm}|^2 \).

Let \(h : \mathbb{R}_+^2 \to \mathbb{R}_+ \) be an increasing function on each variable such that

\[
\int_1^{+\infty} \int_1^{+\infty} \frac{du_1du_2}{h(u_1,u_2)} < +\infty.
\]

Lemma 2 ([5]). Let \(\delta > 0 \). Then there exists a set \(E \subset T \) of asymptotically finite logarithmic measure such that for all \(r \in T \setminus E \) we have

\[
\frac{\partial}{\partial r_1} \ln M_f(r) \leq \frac{1}{1-r_1} \cdot h\left(\ln M_f(r), \ln r_2 \right) \tag{7},
\]

\[
\frac{\partial}{\partial r_2} \ln M_f(r) \leq \frac{1}{r_2(1-r_1)^\delta} \cdot \left(\ln M_f(r) \right)^{1+\delta} \tag{8}.
\]

Proof of Theorem 2. Without loss of generality we may suppose that \(Z = X = (X_{nm}(t)) \) is a MS (see [7]).

For \(k, m \in \mathbb{Z}_+ \) and \(l \in \mathbb{Z} \) such that \(k > -l \) we denote

\[
G_{klm} = \left\{ r = (r_1, r_2) \in T : k \leq \frac{1}{1-r_1} \leq k + 1, \ l \leq \ln \mu_f(r) \leq l + 1, \ m \leq \ln r_2 \leq m + 1 \right\},
\]
Remark that
\[E_0 = \{ r \in T : \ln \frac{1}{1 - r_1} + \ln \mu_f(r) < 1 \} = \{ r \in T : \frac{\mu_f(r)}{1 - r_1} < e \} \in \mathcal{Y}, \]
because there exists \(r_0 \) such that \(E_0 \cap \Delta_{r_0} = \emptyset \).

By Lemma 2 with \(h(r) = r_1^{1+\delta}r_2^{1+\delta} \) there exists a set \(E_1 \supseteq E_0, E_1 \in \mathcal{Y} \) such that for all \(r \in T \setminus E_1 \) we have
\[\sum_{n+m=0}^{+\infty} (n+m)|a_{nm}|r_1^n r_2^m = M_f(r)\left(r_1 \frac{\partial}{\partial r_1} (\ln M_f(r_1, r_2)) + r_2 \frac{\partial}{\partial r_2} (\ln M_f(r_1, r_2)) \right) \leq \]
\[\leq M_f(r) \left(\frac{r_1}{1 - r_1} \ln^{1+\delta} M_f(r) \ln^{1+\delta} r_2 + \frac{r_2}{r_2 (1 - r_1)^\delta} \ln^{1+\delta} M_f(r) \right) \leq \]
\[\leq \frac{2M_f(r)}{1 - r_1} \ln^{1+\delta} M_f(r) \ln^{1+\delta} r_2 \leq \]
\[\leq \frac{\mu_f(r)}{1 - r_1} \ln^{1+\delta} \frac{\mu_f(r)}{1 - r_1} \ln^{1/2+\delta} r_2 \left(3 \ln \mu_f(r) + 3 \ln \frac{1}{1 - r_1} \right). \]

Therefore
\[\sum_{n+m \geq d} |a_{nm}|r_1^n r_2^m \leq \sum_{n+m \geq d} \frac{n+m}{d} |a_{nm}|r_1^n r_2^m \leq \frac{1}{d} \sum_{n+m=0}^{+\infty} (n+m)|a_{nm}|r_1^n r_2^m \leq \]
\[\leq \frac{1}{d} \frac{\mu_f(r)}{1 - r_1} \ln^{2+\delta} \frac{\mu_f(r)}{1 - r_1} \ln r_2 \leq \frac{1}{d} \frac{\mu_f(r)}{1 - r_1} \ln^{3+\delta} \frac{\mu_f(r)}{1 - r_1} \leq \mu_f(r), \quad (9) \]
where
\[d = d(r) = \frac{1}{(1 - r_1)^{2+\delta}} \cdot \ln^{3+\delta} \frac{\mu_f(r)}{1 - r_1}. \]

Let \(G^*_{kl} = G_{kl} \setminus E_2, I = \{(i,j) : G^*_{ij} \neq \emptyset\}, \]
\[E_2 = E_1 \cup \left(\bigcup_{(i,j) \not\in I} G_{ij} \right). \]

Then \(\#I = +\infty \). For \((k,l) \in I \) we choose a sequence \(r^{(k,l)} \in G^*_{kl} \) such that \(M_f(r^{(k,l)}) = \min_{r \in G^*_{kl}} M_f(r) \). So, for all \(r \in G^*_{kl} \) we get
\[\mu_f(r^{(k,l)}) \leq \mu_f(r) \leq e \mu_f(r^{(k,l)}), \quad (10) \]
\[\frac{1}{e} \frac{1}{1 - r_1^{(k,l)}} \leq \frac{1}{1 - r_1} \leq e \frac{1}{1 - r_1^{(k,l)}}, \quad (11) \]
\[\frac{1}{e^2} \frac{\mu_f(r^{(k,l)})}{1 - r_1} \leq \frac{\mu_f(r)}{1 - r_1} \leq e^2 \frac{\mu_f(r^{(k,l)})}{1 - r_1^{(k,l)}}. \quad (12) \]
and also
\[\bigcup_{(k,l) \in I} G_{kl}^* = \bigcup_{(k,l) \in I} G_{kl} \setminus E_2 = \bigcup_{k,l=1}^{+\infty} G_{kl} \setminus E_2 = T \setminus E_2. \]

Denote \(N_{kl} = [2d_1(r_{(k,l)})] \), where
\[d_1(r) = \frac{e^{2+\delta}}{(1 - r_1)^{2+\delta}} \ln^{3+\delta} \frac{e^2 \mu_f(r)}{1 - r_1}. \]

For \(r \in G_{kl}^* \) we put
\[W_{N_{kl}}(r, t) = \max \left\{ \left| \sum_{n+m \leq N_{kl}} a_{nm} r_1^n r_2^m e^{in_1 \psi_1 + in_2 \psi_2} X_{nm}(t) \right| : \psi \in [0, 2\pi]^2 \right\}. \]

For a Lebesgue measurable set \(G \subset G_{kl}^* \) and for \((k, l) \in I\) we denote \(\nu_{kl}(G) = \frac{\text{meas}(G)}{\text{meas}(G_{kl}^*)} \), where \(\text{meas} \) denotes the Lebesgue measure on \(\mathbb{R}^2 \).

Remark that \(\nu_{kl} \) is a probability measure defined on the family of Lebesgue measurable subsets of \(G_k^* \) ([7]). Let \(\Omega = \bigcup_{(k,l) \in I} G_{kl}^* \) and
\[k_i, l_{i,j} : (k_i, l_{i,j}) \in I, \ k_i < k_{i+1}, \ l_{i,j} < l_{i,j+1}, \ \forall i,j \in \mathbb{Z}_+. \]

For Lebesgue measurable subsets \(G \) of \(\Omega \) we denote
\[\nu(G) = 2^{k_0} \sum_{i=0}^{+\infty} \left(\frac{1}{2^{k_i}} \right) \left(\frac{k_{i+1} - k_i}{2^{k_i}} \right) \times \]
\[\times \sum_{j=0}^{N_i} 2^{l_{i,j}} \left(1 - \frac{1}{2^{k_i}} \right) \frac{l_{i,j+1} - l_{i,j}}{1 - \frac{1}{2^{k_i}}} \nu_{k_{i+1}l_{i+1,j+1}}(G \cap G_{k_{i+1}l_{i+1,j+1}}^*), \quad (13) \]

where \(N_i = \max \{ j : (k_i, l_{i,j}) \in I \} \). Remark that \(\nu_{k_{i+1}l_{i+1,j+1}}(G_{k_{i+1}l_{i+1,j+1}}^*) = \nu(\Omega) = 1. \)

Thus \(\nu \) is a probability measure, which is defined on measurable subsets of \(\Omega \). On \([0, 1] \times \Omega\) we define the probability measure \(P_0 = P \times \nu \), which is the direct product of the probability measures \(P \) and \(\nu \). Now for \((k, l) \in I\) we define
\[F_{kl} = \{(t, r) \in [0, 1] \times \Omega : W_{N_{kl}}(r, t) > A S_{N_{kl}}(r) \ln^{1/2} N_{kl} \}, \]
\[F_{kl}(r) = \{ t \in [0, 1] : W_{N_{kl}}(r, t) > A S_{N_{kl}}(r) \ln^{1/2} N_{kl} \}, \]

where \(S_{N_{kl}}^2(r) = \sum_{n+m=0}^{N_{kl}} |a_{nm}| r_1^n r_2^m \) and \(A \) is the constant from Lemma 1 with \(\beta = 1. \)

Using Fubini’s theorem and Lemma 1 with \(c_n = a_n r^n \) and \(\beta = 1 \), we get for \((k, l) \in I\)
\[P_0(F_{kl}) = \int_\Omega \left(\int_{F_{kl}(r)} dP \right) d\nu = \int_\Omega P(F_{kl}(r)) d\nu \leq \frac{1}{N_{kl}} \nu(\Omega) = \frac{1}{N_{kl}}. \]

Note that
\[N_{kl} > \frac{1}{(1 - r_1^{(k,l)})^{2+\delta}} \ln^{3+\delta} \frac{\mu_f(r_{(k,l)})}{1 - r_1^{(k,l)}} \geq e^{2k(l + k)^3}. \]
Therefore

\[
\sum_{(k,l) \in I} P_0(F_{kl}) \leq \sum_{k=1}^{+\infty} \sum_{l=-k+1}^{+\infty} \frac{1}{e^{2k(l+k)^2}} < +\infty.
\]

By Borel-Cantelli’s lemma the infinite quantity of the events \{F_{kl}: (k, l) \in I\} may occur with probability zero. So,

\[
P_0(F) = 1, \quad F = \bigcup_{s=1}^{+\infty} \bigcup_{m=1}^{+\infty} \bigcap_{t \geq s, \ l \geq m} F_{t,l} \subset [0, 1] \times \Omega.
\]

Then for any point \((t, r) \in F\) there exist \(k_0 = k_0(t, r)\) and \(l_0 = l_0(t, r)\) such that for all \(k \geq k_0, l \geq l_0, (k, l) \in I\) we have \(W_{N_{kl}}(r, t) \leq A S_{N_{kl}}(r) \ln^{1/2} N_{kl}\).

So, \(\nu(F \wedge t) = 1\) (see [7]).

For any \((t, r) \in F\) and \((k, l) \in I\) we choose a point \(r_0^{(k, l)}(t) \in G_{kl}^*\) such that

\[
W_{N_{kl}}(r_0^{(k, l)}(t), t) \geq \frac{3}{4} M_{kl}(t), \quad M_{kl}(t) \overset{\text{def}}{=} \sup\{W_{N_{kl}}(r, t) : r \in G_{kl}^*\}.
\]

Then from \(\nu_{kl}(F \wedge t \cap G_{kl}^*) = 1\) for all \((k, l) \in I\) it follows that there exists a point \(r^{(k, l)}(t) \in G_{kl}^* \cap F \wedge t\) such that

\[
|W_{N_{kl}}(r_0^{(k, l)}(t), t) - W_{N_{kl}}(r^{(k, l)}(t), t)| < \frac{1}{4} M_{kl}(t)
\]
or

\[
\frac{3}{4} M_{kl}(t) \leq W_{N_{kl}}(r_0^{(k, l)}(t), t) \leq W_{N_{kl}}(r^{(k, l)}(t), t) + \frac{1}{4} M_{kl}(t).
\]

Since \((t, r^{(k, l)}(t)) \in F\), from inequality (13) we obtain

\[
\frac{1}{2} M_{kl}(t) \leq W_{N_{kl}}(r^{(k, l)}(t), t) \leq A S_{N_{kl}}(r^{(k, l)}(t)) \ln^{1/2} N_{kl}.
\]

Now for \(r^{(k, l)} = r^{(k, l)}(t)\) we get

\[
S_{N_{kl}}^2(r^{(k, l)}) \leq \mu_f(r^{(k, l)}) \mathcal{M}_f(r^{(k, l)}) \leq \frac{\mu_f^2(r^{(k, l)})}{(1 - r_1^{(k, l)})} \ln^{1+\delta} \frac{\mu_f(r^{(k, l)})}{1 - r_1^{(k, l)}} \ln^{1/2 + \delta} r_2^{(k, l)}.
\]

So, for \(t \in F_1\) and all \(k \geq k_0(t), l \geq l_0(t)\), we obtain

\[
S_N(r^{(k, l)}) \leq \mu_f(r^{(k, l)}) \left(\frac{1}{1 - r_1^{(k, l)}} \ln \frac{\mu_f(r^{(k, l)})}{1 - r_1^{(k, l)}} \sqrt{\ln r_2^{(k, l)}} \right)^{1/2 + \delta/2}.
\] (14)

It follows from (10)–(12) that \(d_1(r^{(k, l)}) \geq d(r)\) for \(r \in G_{kl}^*\). Then for \(t \in F_1, r \in F \wedge t \cap G_{kl}^*, (k, l) \in I, k \geq k_0(t), l \geq l_0(t)\) we get

\[
M_f(r, t) \leq \sum_{n+m \geq 2d_1(r^{(k, l)})} |a_{nm}| r_1^n r_2^m + W_{N_{kl}}(r, t) \leq \sum_{n+m \geq 2d(r)} |a_{nm}| r_1^n r_2^m + M_{kl}(t).
\]

Finally for \(t \in F_1, r \in F \wedge t \cap G_{kl}^*, l \geq l_0(t)\) and \(k \geq k_0(t)\) we obtain

\[
M_f(r^{(k, l)}, t) \leq \mu_f(r^{(k, l)}) + 2 A S_{N_{kl}}(r^{(k, l)}) \ln^{1/2} N_{kl} \leq \mu_f(r^{(k, l)}) +
\]
Proof. Theorem 3. 4. Sharpness of Theorem 2. Let Z be a sequence of random variables such that $|Z_{nm}| \geq 1$ for almost all $t \in [0; 1]$. Then for there exist an analytic function $f \in \mathcal{A}_2$, a constant $C > 0$ and $r_0 \in T$, such that almost surely in t for all $r \in \Delta_{r_0}$ we get

$$M_f(r, t) \geq \frac{C \mu_f(r)}{\sqrt{1 - r_1}} \cdot \ln^{1/2} \frac{\mu_f(r)}{1 - r_1}. \quad (16)$$

Proof. Consider the functions

$$g(z_1, z_2) = \sum_{n+m=0}^{+\infty} \frac{e^{\sqrt{m}}}{n!} z_1^n z_2^m, \quad f(z_1, z_2) = \sum_{n+m=0}^{+\infty} \frac{e^{\sqrt{m}/2}}{n!} z_1^n z_2^m,$$

$$f(z, t) = \sum_{n+m=0}^{+\infty} Z_{nm}(t) \frac{e^{\sqrt{m}/2}}{\sqrt{n!}} z_1^n z_2^m.$$
Remark, that for all \(r \in T \) we have

\[
\mu_g(r_1^2, r_2^2) = \max \left\{ \frac{e^{\sqrt{m}}}{n!} z_1^n z_2^m : (n, m) \in \mathbb{Z}_+^2 \right\} = \\
= \max \left\{ \left(\frac{e^{\sqrt{m}/2}}{\sqrt{n!}} z_1^n z_2^m \right)^2 : (n, m) \in \mathbb{Z}_+^2 \right\} = (\mu_f(r_1, r_2))^2.
\]

Using Parseval’s equality, we get for almost all \(t \)

\[
M_g(r_1^2, r_2^2) \leq \sum_{n+m=0}^{+\infty} |Z_{nm}(t)|^2 \frac{e^{\sqrt{m}}}{n!} z_1^n z_2^m = \\
= \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} |f(r_1 e^{i\theta}, r_2 e^{i\varphi}, t)|^2 dr d\theta \leq (M_f(r_1, r_2, t))^2.
\]

There exist \(r_0 \in T \) ([5]) a set \(r_0 \in \Delta r_0 \)

\[
M_g(r_1, r_2) > \frac{C \mu_g(r_1, r_2)}{1 - r_1} \ln \frac{\mu_g(r_1, r_2)}{1 - r_1},
\]

\[
(M_f(r_1, r_2, t))^2 \geq M_g(r_1, r_2) \geq \frac{C \mu_g(r_1^2, r_2^2)}{1 - r_1^2} \ln \frac{\mu_g(r_1^2, r_2^2)}{1 - r_1^2} = \\
= \frac{C \mu_f^2(r_1, r_2)}{(1 - r_1)(1 + r_1)} \ln \frac{\mu_f^2(r_1, r_2)}{(1 - r_1)(1 + r_1)} \geq \frac{C \mu_f^2(r_1, r_2)}{2} \ln \frac{\mu_f^2(r_1, r_2)}{1 - r_1}
\]

and

\[
M_f(r, t) \geq \left(\frac{C \mu_f^2(r_1, r_2)}{2} \ln \frac{\mu_f^2(r_1, r_2)}{1 - r_1} \right)^{1/2} \geq \sqrt{\frac{C \mu_f(r_1, r_2)}{2}} \ln^{1/2} \frac{\mu_f(r_1, r_2)}{1 - r_1}.
\]

\[\square\]

REFERENCES

Ivan Franko National University of Lviv
kurylyak88@gmail.com
olslask@gmail.com
12ivan.n@ukr.net

Received 06.06.2016