Step averaging differential inclusions with variable dimension on a finite interval (in Russian)

Author
A. A. Plotnikov
Odessa National University named after I.I.Mechnikov
Abstract
Nonlinear differential inclusion with variable dimension and justification of the step scheme of the averaging method on a finite interval is considered in this paper.
Keywords
averaging method; differential inclusion; variable dimension
DOI
doi:10.15330/ms.46.1.81-88
Reference
1. Aubin J.-P., Cellina A., Differential inclusions. Set-valued maps and viability theory. – Springer-Verlag, 1984.

2. Blagodatskikh V.I., Filippov A.F. Differential inclusions and optimal control// Proc. Steklov Inst. Math. – 1986. – V.169. – P. 199–259.

3. Perestyuk N.A., Plotnikov V.A., Samoilenko A.M., Skripnik N.V. Differential equations with impulse effects: multivalued right-hand sides with discontinuities. – de Gruyter Stud. Math.: 40, Berlin/Boston: Walter De Gruyter GmbH& Co., 2011.

4. Plotnikov V.A., Plotnikov A.V., Vityuk A.N., Differential equations with a multivalued right-hand side: Asymptotic methods. – AstroPrint, Odessa. 1999. (in Russian)

5. Smirnov G.V. Introduction to the theory of differential inclusions. – Graduate Studies in Mathematics, Vol. 41, American Mathematical Society. Providence, Rhode Island, 2002.

6. Krylov N.M., Bogoliubov N.N. Introduction to nonlinear mechanics. – Princeton University Press, Princeton, 1947.

7. Arnol’d, V.I. Mathematical methods of classical mechanics. – Nauka, Moscow, 1989. (in Russian)

8. Filatov A.N. Asymptotic methods in the theory of differential and integrodifferential equations. – Izdat. “Fan” Uzbek. SSR. Tashkent, 1974. (in Russian)

9. Filatov A.N., Sharova L.V. Integral inequalities and the theory of nonlinear oscillations. – Nauka, Moscow, 1976. (in Russian)

10. Filatov O.P., Khapaev M.M. Averaging of systems of differential inclusions. – Izdatel’stvo Moskovskogo Universiteta imeni M. V. Lomonosova, Moscow, 1998. (in Russian)

11. Gama R., Smirnov G. Stability and optimality of solutions to differential inclusions via averaging method// Set-Valued Var. Anal. – 2014. – V.22, ¹2. – P. 349–374.

12. Klymchuk S., Plotnikov A., Skripnik N. Overview of V.A. Plotnikov’s research on averaging of differential inclusions// Phys. D. – 2012. – V.241, ¹22. – P. 1932–1947.

13. Lochak P., Meunier C. Multiphase averaging for classical systems. – Appl. Math. Sci., V.72, Springer- Verlag, New York, 1988.

14. Sanders J.A., Verhulst F. Averaging methods in nonlinear dynamical systems. – Appl. Math. Sci., V.59, Springer-Verlag, New York, 1985.

15. Fedoseev A.V. Research methods of optimum control of one model of working out of group of deposits of a mineral with the limited stores// Methods of the system analysis and problems of rational use of resources, Vychislitel’nyj Tsentr AN SSSR, Moskva. – 1977. – P. 117–134. (in Russian)

16. Khachaturov V.R., Bosolejl R., Fedoseev A.V. Simulation modelling and optimum control problems at long-term planning of manufacture of long-term agricultural crops. – Vychislitel’nyj Tsentr AN SSSR, Moskva, 1985. (in Russian)

17. Romanenko A.V., Fedoseev A.V. Optimal control of economic systems with a growth structure// Comput. Math. Math. Phys. – 1993. – V.33, ¹8. – P. 1017–1026.

18. Kichmarenko O.D., Plotnikov A.V. Nonlinear differential inclusion with variable dimension and their properties// Visn. Odes. Nats. Univ. Matematika i Mekhanika. – 2013. – V.18, ¹2. – P. 29—34. (in Russian)

19. Kichmarenko O.D., Plotnikov A.A. The averaging of control linear differential equations with variable dimension on finite interval// International Journal of Sensing, Computing and Control. – 2015. – V.5, ¹1. – P. 25–35.

Pages
81-88
Volume
46
Issue
1
Year
2016
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue