On continuous extensions of Orlicz-Sobolev classes (in Russian) |
|
Author |
smolka21@yandex.ru; ruslan623@yandex.ru
Institute of Applied Mathematics and Mechanics, Slavyansk; Institute of Mathematics, National Academy of Sciences of Ukraine
|
Abstract |
The problem of continuous extension to the boundary of mappings from Orlicz-Sobolev
classes between domains is investigated in Euclidean space.
|
Keywords |
boundary behavior; Orlicz-Sobolev classes; p-modulus; Q-homeomorphism
|
DOI |
doi:10.15330/ms.45.1.34-39
|
Reference |
1. Afanasieva E.S., Ryazanov V.I., Salimov R.R. On mappings in the Orlicz-Sobolev classes on Riemannian
manifolds// Ukr. Mat. Visn. - 2011. - V.8, Ή3. - P. 319-342. (in Russian)
2. Kovtonyuk D.A., Salimov R.R., Sevostyanov E.A. To the theory of the mappings of Sobolev and Orlicz-Sobolev classes. - Naukova Dumka, Kyiv, 2013. (in Russian) 3. Kovtonyuk D.A., Ryazanov V.I., Salimov R.R., Sevostyanov E.A. Toward the theory of the Orlicz-Sobolev classes// Algebra i Analiz. - 2013. - V.25, Ή6. - P. 50-102. (in Russian) 4. Sevostyanov E.A. On the boundary behavior of open discrete mappings with unbounded characteristic// Ukr. Math. J. - 2012. - V.64, Ή6. - P. 855-859. (in Russian) 5. Il'yutko D.P., Sevostyanov E.A. On local properties of one class of mappings on Riemannian manifolds// Ukr. Mat. Visn. - 2015. - V.12, Ή2. - P. 210-221. (in Russian) 6. Iwaniec T., Sverak V. On mappings with integrable dilatation// Proc. Amer. Math. Soc. - 1993. - V.118. - P. 181-188. 7. Iwaniec T., Martin G., Geometrical function theory and non-linear analysis, Oxford: Clarendon Press, 2001. 8. Krasnoselskij M.A., Rutitskij Ja.B., Convex functions and Orlicz spaces. - Moscow: Nauka, 1958. (in Russian) 9. Mazya V., Sobolev classes. Berlin: Springer-Verlag, 1985. 10. Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in modern mapping theory. New York: Springer, 2009. 367 p. 11. Golberg A., Salimov R. Topological mappings of integrally bounded pmoduli// Ann. Univ. Bucharest, Ser. Math. 2012. V.3(LXI), Ή1. P. 4966. 12. Kovtonyuk D., Ryazanov V. On the theory of lower Q-homeomorphisms// Ukr. Mat. Visn. 2008. V.5, Ή2. P. 159184. (in Russian); translated in Ukrainian Math. Bull. by AMS. 13. Shlyk V.A. On the equality between p.capacity and p.modulus// Sibirsk. Mat. Zh. 1993. V.34, Ή6. P. 216221; transl. in Siberian Math. J. 1993. V.34, Ή6. P. 11961200. 14. Ziemer W.P. Extremal length and p-capacity// Michigan Math. J. 1969. V.16. P. 4351. 15. Salimov R.R. On a new condition of finite Lipschitz of Orlicz-Sobolev class// Mat. Stud. 2015. V.44, Ή1. P. 2735. (in Russian) |
Pages |
34-39
|
Volume |
45
|
Issue |
1
|
Year |
2016
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |