New characterizations of commutative clean rings

Author
B. Zabavsky, A. Gatalevych
Department of Mechanics and Mathematics, Ivan Franko National University of Lviv
Abstract
A ring is called clean if every its element is the sum of a unit and an idempotent. We introduce the notion of an avoidable element and describe class of the commutative clean rings as the rings in which zero is an avoidable element.
Keywords
Bezout ring; neat ring; clean ring; elementary divisor ring; stable range 1; neat range 1
DOI
doi:10.15330/ms.44.2.115-118
Reference
1. O. Helmer, The elementary divisor for rings without chain condition, Bull. Amer. Math. Soc., 49 (1943), ¹2, 235–236.

2. I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc., 66 (1949), 464–491.

3. M. Larsen, W. Lewis, T. Shores, Elemetary divisor rings and finitely presented modules, Trans. Amer. Mat. Soc., 187 (1974), 231–248.

4. W. McGovern, Neat rings, J. Pure Appl. Alg., 205 (2006), ¹2, 243–265.

5. W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Mat. Soc., 229 (1977), 269–279.

Pages
115-118
Volume
44
Issue
2
Year
2015
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue