Azarov limit sets for Radon measures. II (in Russian) |
|
Author |
quynhsonla1988@gmail.com
Karazin Kharkiv National University
|
Abstract |
In this part of the work we prove theorems 1-9 which have been formulated in the first part
(Mat. Stud. 2015, 43(1), 94-99).
|
Keywords |
proximate order; limit set of Azarin
|
DOI |
doi:10.15330/ms.43.2.189-219
|
Reference |
1. Grishin A.F., Quynh N.V. Azarov limit sets for Radon measures. I// Mat. Stud. – 2015. – V.43, ¹1. – P.
94–99. (in Russian)
2. Grishin A.F., Malyutina T.I. On proximate order// Complex analysis and mathematical physics, Krasnoyarsk. – 1998. – P. 10–24. (in Russian) 3. Levin B.Ja. Distribution of zeros of entire functions. – Moscow: Tehn. Teor. Lit., 1956. – 632 p. (in Russian) 4. Vladimirov V.S. Generalized functions in mathematical physics. – Moscow: Nauka, 1979. – 320 p. (in Russian) 5. Bourbaki N. Integration. – Moscow: Nauka, 1977. – 396 p. (in Russian) 6. Landkof N.S. Foundations of modern potential theory. – Moscow: Nauka, 1966. – 515 p. (in Russian) 7. Grishin A.F., Poedintseva I.V., Abelian and Tauberian theorems for integrals// Algebra i Analiz. – 2014. – V.26, ¹3. – P. 1–88. (in Russian) 8. Nemytskii V.V., Stepanov V.V. Qualitative theory of differential equations. – Moscow, Leningrad: Tehn. Teor. Lit., 1949. – 448 p. (in Russian) 9. Cassels J.W.S. An introduction to diophantine approximation. – Moscow: In. Lit., 1961. – 212 p. (in Russian) |
Pages |
189-219
|
Volume |
43
|
Issue |
1
|
Year |
2015
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |