Azarov limit sets for Radon measures. II (in Russian)

Author
A. F. Grishin, N. V. Quynh
Karazin Kharkiv National University
Abstract
In this part of the work we prove theorems 1-9 which have been formulated in the first part (Mat. Stud. 2015, 43(1), 94-99).
Keywords
proximate order; limit set of Azarin
DOI
doi:10.15330/ms.43.2.189-219
Reference
1. Grishin A.F., Quynh N.V. Azarov limit sets for Radon measures. I// Mat. Stud. 2015. V.43, 1. P. 9499. (in Russian)

2. Grishin A.F., Malyutina T.I. On proximate order// Complex analysis and mathematical physics, Krasnoyarsk. 1998. P. 1024. (in Russian)

3. Levin B.Ja. Distribution of zeros of entire functions. Moscow: Tehn. Teor. Lit., 1956. 632 p. (in Russian)

4. Vladimirov V.S. Generalized functions in mathematical physics. Moscow: Nauka, 1979. 320 p. (in Russian)

5. Bourbaki N. Integration. Moscow: Nauka, 1977. 396 p. (in Russian)

6. Landkof N.S. Foundations of modern potential theory. Moscow: Nauka, 1966. 515 p. (in Russian)

7. Grishin A.F., Poedintseva I.V., Abelian and Tauberian theorems for integrals// Algebra i Analiz. 2014. V.26, 3. P. 188. (in Russian)

8. Nemytskii V.V., Stepanov V.V. Qualitative theory of differential equations. Moscow, Leningrad: Tehn. Teor. Lit., 1949. 448 p. (in Russian)

9. Cassels J.W.S. An introduction to diophantine approximation. Moscow: In. Lit., 1961. 212 p. (in Russian)

Pages
189-219
Volume
43
Issue
1
Year
2015
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue