On some approximation properties of the Bessel functions of order 5/2 (in Ukrainian)

O. V. Shavala
Drohobych Ivan Franko State Pedagogical University
Completeness and minimality of the system of functions generated by the Bessel function of order 5/2 are studied.
Bessel function; zeros of Bessel function; completeness and minimality of systems; biorthogonal system
1. L. Abreu, Completeness, special functions and uncertainty principles over q-linear grids, available at: http://arxiv.org/pdf/math/0602440.pdf.

2. H. Bateman, A. Erdelyi, Higher transcendental functions. – V.2, Nauka, Moscow, 1966. (in Russian)

3. R. Boas, H. Pollard, Complete sets of Bessel and Legendre functions, Annals of Math., 48 (1947), ¹2, 366–384.

4. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products. – Academic Press, Amsterdam, 2007.

5. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Edited by M. Abramowitz and I. A. Stegun, National Bureau of Standards – U.S. Government Printing Office, USA, 1972.

6. J.R. Higgins, Completeness and basis properties of sets of special functions. – Cambridge university press, Cambridge, London, New York, Melbourne, 1977.

7. H. Hochstadt, The mean convergence of Fourier-Bessel series, SIAM Review, 9 (1967), ¹2, 211–218.

8. A. Hurwitz, Uber die Nullstellen der Bessel’schen Function, Math. Ann., 33 (1889), 246–266.

9. S. G. Krein (editor and coauthor), Functional Analysis. – Nauka, Moskow, 1972. (in Russian)

10. L.A. Lyusternik, V.I. Sobolev, Elements of functional analysis. – Nauka, Moskow, 1965. (in Russian)

11. L.S. Maergoiz, N.N. Tarkhanov, An analogue of the Paley-Winer theorem and its applications to optimal recovery of entire functions, Ufimsk. Mat. Zh., 3 (2011), ¹1, 16–30. (in Russian)

12. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series. – V.2: Special Functions, FIZMATLIT, Moscow, 2003. (in Russian)

13. V.S. Vladimirov, The equations of mathematical physics. – Nauka, Moscow, 1981. (in Russian)

14. B.V. Vynnyts’kyi, V.M. Dilnyi, On some analogues of Paley-Wiener theorem and one boundary value problem for Bessel operator, Int. conf. on complex analysis in memory of A.A. Gol’dberg, Lviv, 2010, 63–64.

15. B.V. Vynnyts’kyi, R.V. Khats’, A note concerning generalized eigenvectors of linear differential operators, Actual problems of physics, mathematics and informatics, 5 (2013), 38–41. (in Ukrainian)

16. B.V. Vynnyts’kyi, R.V. Khats’, Completeness and minimality of systems of Bessel functions, Ufimsk. Mat. Zh., 5 (2013), ¹2, 132–141.

17. B.V. Vynnyts’kyi, O.V. Shavala, Boundedness of solutions of a second-order linear differential equation and a boundary value problem for Bessel’s equation, Mat. Stud., 30 (2008), ¹1, 31–41. (in Ukrainian)

18. B.V. Vynnyts’kyi, O.V. Shavala, On completeness of the system $\{\cos(\rho_nx)+\rho_nx\sin(\rho_nx)\}$ and a boundary value problem for Bessel operator, Int. conf. Analysis and Topology, Lviv, 2008, 54–55.

19. B.V. Vynnyts’kyi, O.V. Shavala, Some properties of boundary value problems for Bessel’s equation, Mat. Visn. Nauk. Tov. Im. Shevchenka, 10 (2013), 189–192.

20. B.V. Vynnyts’kyi, O.V. Shavala, Some properties of boundary value problems generated by Bessel’s equation, Int. conf. dedicated to the 120th anniversary of S. Banach, Lviv, 2012, 70 p.

21. G.N. Watson, A treatise on the theory of Bessel functions. – Cambridge University Press, Cambridge, 1966.

Matematychni Studii
Full text of paper
Table of content of issue