Processing math: 4%

On the stability of entire multiple Dirichlet series

Author
M. M. Dolynyuk, O. B. Skaskiv
Ivan Franko National University of Lviv
Abstract
Let Dp(λ) be the class of entire multiple Dirichlet series of the form F(z)=, z\in\mathbb{C}^{p},\ p\geq 1, with exponents satisfying the conditions \lambda_n=(\lambda^{(1)}_{n_1},\ldots,\lambda^{(p)}_{n_p}), n=(n_1,\ldots,n_p)\in\mathbb{Z}^{p}_{+}, 0\le\lambda^{(j)}_{k}\leq\lambda^{(j)}_{k+1}\to +\infty\ (0\leq k\to +\infty);\ w\colon [0,+\infty)\to [0,+\infty) {a} nondecreasing function, and \nu_1(t)=\sum_{\|\lambda_n\|\leq t}e^{w(\|\lambda_n\|)}, \|a\|=a_1+\ldots+a_p, (a,b)=a_1b_1+\ldots+a_pb_p, for a=(a_1,\ldots, a_p),\ b=(b_1,\ldots, b_p)\in\mathbb{C}^p.\ If \int_{1}^{+\infty}t^{-1}d\ln\nu_1(t) is finite and F_w\in D^p(\lambda),\ F_w(z)=\sum\nolimits_{\|n\|=0}^{+\infty}{a_{n}\textrm{e}^{w(\|\lambda_n\|)+(z,\lambda_{n})}}.\ {Then} \ln\max\{|a_n|e^{w(\|\lambda_n\|)+(\sigma,\lambda_n)}\colon n\in\mathbb{Z}^{p}_{+}\}\sim\ln\max\{|a_n|e^{(\sigma,\lambda_n)}\colon n\in\mathbb{Z}^{p}_{+}\} as |\sigma| \to +\infty\ (\sigma\in K\setminus E), for {an} arbitrary cone K in \mathbb{R}^p_+ with vertex at the point O such that \overline{K}\backslash\{O\}\subset\mathbb{R}^p_+, and {a} measurable set E\subset \mathbb{R}_{+}^{p} such that \tau_{p}(E\cap K)=\int\nolimits_{E\cap K}\frac{d\sigma_1\ldots d\sigma_p}{|\sigma|^{p-1}} is finite.
Keywords
Dirichlet series; maximal term; stability; exceptional set; asymptotic estimate; Laplace-Stieltjes integral
DOI
doi:10.15330/ms.43.2.171-179
Reference
1. Gaisin A.M. The estimate of a Dirichlet series with Fejer gaps// Dokl. RAN. – 2000. – V.370, №6. – P. 735–737.

2. Skaskiv O.B., Trakalo O.M. On the stability of the maximum term of the entire Dirichlet series// Ukr. Mat. Zh. – 2005. – V.57, №4. – P. 571–576. (in Ukrainian); English transl. in Ukr. Math. J. – 2005. – V.57, №4. – P. 686–693.

3. Leont’ev A.F. Exponential series. – Мoscow: Nauka, 1976. – 536 p.

4. Mulyava O.M. On the abscissa of the convergence of the Dirichlet series// Mat. Stud. – 1998. – V.8, №2. – P. 171–176. (in Ukrainian)

5. Skaskiv O.B. The stability of the maximum of a sequence of linear functions// International conference dedicated to 125-th anniversary of Hans Hahn: Book of abstracts. – International conf. (Chernivtsi, June 27–July 3, 2004). – P. 100–101. (in Ukrainian)

6. Skaskiv O.B. The stability of the maximum of a sequence of linear functions// Mat. Visn. NTSh. – 2004. – V.1. – P. 120–129. (in Ukrainian)

7. Dolynyuk M., Skaskiv O. The stability of the maximal term of entire multiple Dirichlet series// International V.Ya. Skorobohatko mathematical conference: Book of abstracts. – International conf. (Drohobych, September 24–28, 2007). – Lviv, 2007. – P. 94. (in Ukrainian)

8. Skaskiv O.B., Trakalo O.M. Asymptotic estimates for Laplace integrals// Mat. Stud. – 2002. – V.18, №2. - P. 125–146. (in Ukrainian)

9. Skaskiv O.B., Zikrach D.Yu. On the best possible description of exceptional set in asymptotic estimates for Laplace–Stieltjes integrals// Mat. Stud. – 2011. – V.35, №2. – P. 131–141.

10. Skaskiv O.B. On the behaviour of the maximum term of a Dirichlet series defining an entire function// Mat. Zametki. – 1985. – V.37, №1. – P. 41–47.; English transl. in Math. Notes, 1985, V.37, №1, 24–28.

Pages
171-179
Volume
43
Issue
1
Year
2015
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue