On the stability of entire multiple Dirichlet series |
|
Author |
mira0201@rambler.ru, olskask@gmail.com
Ivan Franko National University of Lviv
|
Abstract |
Let $D^p(\lambda)$ be the class of entire multiple Dirichlet
series of the form
$F(z)=\sum\nolimits_{\|n\|=0}^{+\infty}{a_{n}\textrm{e}^{(z,\lambda_{n})}}$,
$z\in\mathbb{C}^{p},$\ $p\geq 1$, with exponents satisfying the
conditions
$\lambda_n=(\lambda^{(1)}_{n_1},\ldots,\lambda^{(p)}_{n_p})$,
$n=(n_1,\ldots,n_p)\in\mathbb{Z}^{p}_{+}$,
$0\le\lambda^{(j)}_{k}\leq\lambda^{(j)}_{k+1}\to +\infty$\ $(0\leq
k\to +\infty)$;\ $w\colon [0,+\infty)\to [0,+\infty)$ {a}
nondecreasing function, and $\nu_1(t)=\sum_{\|\lambda_n\|\leq
t}e^{w(\|\lambda_n\|)}$, $\|a\|=a_1+\ldots+a_p$,
$(a,b)=a_1b_1+\ldots+a_pb_p$, for $a=(a_1,\ldots, a_p),\
b=(b_1,\ldots, b_p)\in\mathbb{C}^p$.\ If
$\int_{1}^{+\infty}t^{-1}d\ln\nu_1(t)$ is finite and $F_w\in
D^p(\lambda)$,\
$F_w(z)=\sum\nolimits_{\|n\|=0}^{+\infty}{a_{n}\textrm{e}^{w(\|\lambda_n\|)+(z,\lambda_{n})}}$.\
{Then} $ \ln\max\{|a_n|e^{w(\|\lambda_n\|)+(\sigma,\lambda_n)}\colon
n\in\mathbb{Z}^{p}_{+}\}\sim\ln\max\{|a_n|e^{(\sigma,\lambda_n)}\colon
n\in\mathbb{Z}^{p}_{+}\} $ as $|\sigma| \to +\infty$\ $(\sigma\in
K\setminus E)$, for {an} arbitrary cone $K$ in $\mathbb{R}^p_+$ with vertex
at the point $O$ such that
$\overline{K}\backslash\{O\}\subset\mathbb{R}^p_+,$ and {a} measurable
set $E\subset \mathbb{R}_{+}^{p}$ such that $\tau_{p}(E\cap
K)=\int\nolimits_{E\cap K}\frac{d\sigma_1\ldots
d\sigma_p}{|\sigma|^{p-1}}$ is finite.
|
Keywords |
Dirichlet series; maximal term; stability; exceptional set; asymptotic estimate; Laplace-Stieltjes
integral
|
DOI |
doi:10.15330/ms.43.2.171-179
|
Reference |
1. Gaisin A.M. The estimate of a Dirichlet series with Fejer gaps// Dokl. RAN. 2000. V.370, Ή6.
P. 735737.
2. Skaskiv O.B., Trakalo O.M. On the stability of the maximum term of the entire Dirichlet series// Ukr. Mat. Zh. 2005. V.57, Ή4. P. 571576. (in Ukrainian); English transl. in Ukr. Math. J. 2005. V.57, Ή4. P. 686693. 3. Leontev A.F. Exponential series. Μoscow: Nauka, 1976. 536 p. 4. Mulyava O.M. On the abscissa of the convergence of the Dirichlet series// Mat. Stud. 1998. V.8, Ή2. P. 171176. (in Ukrainian) 5. Skaskiv O.B. The stability of the maximum of a sequence of linear functions// International conference dedicated to 125-th anniversary of Hans Hahn: Book of abstracts. International conf. (Chernivtsi, June 27July 3, 2004). P. 100101. (in Ukrainian) 6. Skaskiv O.B. The stability of the maximum of a sequence of linear functions// Mat. Visn. NTSh. 2004. V.1. P. 120129. (in Ukrainian) 7. Dolynyuk M., Skaskiv O. The stability of the maximal term of entire multiple Dirichlet series// International V.Ya. Skorobohatko mathematical conference: Book of abstracts. International conf. (Drohobych, September 2428, 2007). Lviv, 2007. P. 94. (in Ukrainian) 8. Skaskiv O.B., Trakalo O.M. Asymptotic estimates for Laplace integrals// Mat. Stud. 2002. V.18, Ή2. - P. 125146. (in Ukrainian) 9. Skaskiv O.B., Zikrach D.Yu. On the best possible description of exceptional set in asymptotic estimates for LaplaceStieltjes integrals// Mat. Stud. 2011. V.35, Ή2. P. 131141. 10. Skaskiv O.B. On the behaviour of the maximum term of a Dirichlet series defining an entire function// Mat. Zametki. 1985. V.37, Ή1. P. 4147.; English transl. in Math. Notes, 1985, V.37, Ή1, 2428. |
Pages |
171-179
|
Volume |
43
|
Issue |
1
|
Year |
2015
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |