Asymptotic properties of meromorphic solutions of differential equations in a neighborhood of a logarithmic singularity |
|
Author |
kolyasa.lubov@gmail.com
Lviv Polytechnic National University
|
Abstract |
We obtain asymptotic estimates of the moduli of meromorphic
solutions with a logarithmic singularity at $\infty$ of the
differential equation
\begin{gather*}
\sum\limits_{k+s=m}f^kf_1^sv_{ks}(z)z^{\tau_{ks}}\text{Ln} ^{\varkappa_{ks}}z=\sum\limits_{|K|\leq m}b_K(z)f^{k_0}f_1^{k_1}\dots
f_p^{k_p},
\\
f'=f_1, \ldots,f^{(p)}=f_p,\ K=(k_0,k_1,\ldots,k_p),\
|K|=k_0+k_1+\ldots+k_p;\\
\tau_{m-s,s}-s\leqslant\tau_{m-n,n}-n,\ s\leq n=\max\{s\colon k+s=m, c_{ks}\neq0\};
\end{gather*}
where $v_{ks}(z), b_K(z)$ are analytic functions such that
$\forall \alpha, \beta \in\mathbb{R},$
\[
\begin{array}{c}
|b_K(re^{i\theta})|\leq r^{\tau_K},\ v_{ks}(re^{i\theta})=c_{ks}+o(1),\ r\to+\infty,\ \alpha\leqslant\theta\leqslant\beta;\
\tau_{ks},\ \varkappa_{ks},\ \tau_K\in\mathbb{R},\ c_{ks}\in\mathbb{C}.
\end{array}
\]
|
Keywords |
meromorphic function; logarithmic singularity; differential equation
|
Reference |
1. Markushevich À.I. Theory of analytic functions. - Ì.: Nauka, 1967, V.1. – 488p.; 1968, V.2. – 624p. (in
Russian)
2. Golubev V.V. Lectures on the analytic theory of differential equations. - Ì.–L.: GITL, 1950. - 436p. (in Russian) 3. Boutroux P. Sur quelques properties des fonctions entieres// Acta math. – 1904. – V.29. – P. 97–204. 4. Van der Waerden B.L. Algebra. - Ì.: Nauka, 1979. - 624p. (in Russian) 5. Mokhon’ko A.Z., Kuzemko L.I. About logarithmic derivative of meromorphic function// Visnyk of Lviv Polytechnic National University, Physical and mathematical sciences. – 2006. – V.566. – P. 12–19. (in Ukrainian) 6. Goldberg À.À., Ostrovskii I.V. Value distribution of meromorphic functions. – Ì.: Nauka, 1970. – 592 p. (in Russian) 7. Mokhon’ko A.Z., Mokhon’ko V.D. On order of growth of analytic solutions for algebraic differential equations having logarithmic singularity// Mat. Stud. – 2000. – V.13, ¹2. – P. 203–218. 8. Mokhon’ko À.A., Mokhon’ko A.Z. On the logarithmic derivative of meromorphic functions// Topics in Analysis and its Applications. NATO Science Series. II Mathematics, Physics and Chemistry. – 2004. – V.147. – P. 91–103. 9. Mokhon’ko A.Z., Mokhon’ko V.D. Asymptotic estimates growth of meromorphic solutions of differential equations in an angular domain// Sib. Math. J. – 2000. – V.41, ¹1. – P. 185–199. (in Russian) 10. Mokhon’ko A.Z. Estimates of absolute value of the logarithmic derivative of the function meromorphic in an angular domain and its applications// Ukr. Mat. J. – 1989. – V.41, ¹6. – P. 839–843. (in Russian) |
Pages |
67-83
|
Volume |
42
|
Issue |
1
|
Year |
2014
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |