On the solutions of a convolution equation in a semi-strip |
|
Author |
dilnyi@ukr.net
Ivan Franko National University of Lviv
|
Abstract |
We consider a convolution type equation for the Smirnov spaces in a semi-strip. An esti-
mation of a solution in terms of analytic extension is obtained.
|
Keywords |
Hardy space; convolution equation; translation invariant subspaces
|
Reference |
1. P. Koosis, Introduction to Hp spaces, Second edition. Cambridge Tracts in Mathematics, V.115, Cambridge
University Press, Cambridge, 1998.
2. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1949), 239–255. 3. P. Lax, Translation invariant subspaces, Acta Math., 101 (1959), 163–178. 4. B. Vinnitskii, On zeros of functions analytic in a half plane and completeness of systems of exponents, Ukr. Math. Jour., 46 (1994), 484–500. 5. B. Vinnitsky, Solutions of gomogeneous convolution equation in one class of functions analytical in a semistrip, Mat. Stud., 7 (1997), ¹1, 41–52. 6. B. Vinnitsky, V. Dil’nyi, On extension of Beurling-Lax theorem, Math. Notes, 79 (2006), 362–368. 7. V. Dilnyi, On cyclic functions in weighted Hardy spaces, Journ. of Math. Phys., Anal., Geom., 7 (2011), 19–33. 8. I. Privalov, Randeigenschaften analytischer Funktionen, VEB Deutscher Verlag Wiss, Berlin, 1956. |
Pages |
61-66
|
Volume |
42
|
Issue |
1
|
Year |
2014
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |