On the solutions of a convolution equation in a semi-strip

Author
V. Dilnyi
Ivan Franko National University of Lviv
Abstract
We consider a convolution type equation for the Smirnov spaces in a semi-strip. An esti- mation of a solution in terms of analytic extension is obtained.
Keywords
Hardy space; convolution equation; translation invariant subspaces
Reference
1. P. Koosis, Introduction to Hp spaces, Second edition. Cambridge Tracts in Mathematics, V.115, Cambridge University Press, Cambridge, 1998.

2. A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1949), 239–255.

3. P. Lax, Translation invariant subspaces, Acta Math., 101 (1959), 163–178.

4. B. Vinnitskii, On zeros of functions analytic in a half plane and completeness of systems of exponents, Ukr. Math. Jour., 46 (1994), 484–500.

5. B. Vinnitsky, Solutions of gomogeneous convolution equation in one class of functions analytical in a semistrip, Mat. Stud., 7 (1997), ¹1, 41–52.

6. B. Vinnitsky, V. Dil’nyi, On extension of Beurling-Lax theorem, Math. Notes, 79 (2006), 362–368.

7. V. Dilnyi, On cyclic functions in weighted Hardy spaces, Journ. of Math. Phys., Anal., Geom., 7 (2011), 19–33.

8. I. Privalov, Randeigenschaften analytischer Funktionen, VEB Deutscher Verlag Wiss, Berlin, 1956.

Pages
61-66
Volume
42
Issue
1
Year
2014
Journal
Matematychni Studii
Full text of paper
pdf
Table of content of issue