Cycles of admissible quivers(in Ukrainian) |
|
Author |
zelik82@mail.ru
Kamenetz-Podilsk National University of I. Ohienko
|
Abstract |
We study cycles of admissible quivers. Some sufficient conditions under which the deletion
of an arrow in the admissible quiver results in another admissible quiver are presented. We also
find a sufficient condition under which the weight of a given cycle in an admissible quiver is
greater than or equal to k.
|
Keywords |
exponent matrix; admissible quiver; cycle of quiver
|
Reference |
1. Hazewinkel M., Gubareni N., Kirichenko V.V., Algebras rings and modules, mathematical and its applications,
Springers, 2004, V.1, 380 p.
2. Hazewinkel M., Gubareni N., Kirichenko V.V., Algebras rings and modules, mathematical and its applications, Springers, 2007, V.2, 400 p. 3. Kirichenko V.V., Zelenskiy O.V., Zhuravlev V.N. Exponent matrices and tiled order over discrete valuation rings// International Journal of Algebra and Computation. - 2005. - V.15, ¹5&6. – P. 1–16. 4. Zhuravlev V.N. Acceptable quivers// Fundamental and Applied Mathematics. – 2008. – V.14, ¹7. – P. 121–128. (in Russian) 5. Zhuravlev V.N., Zelenskiy A.V., Darmosiuk V.M. Unit quivers of exponent matrices// Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics & Mathematics. – 2012. – ¹4. – P. 27–31. (in Ukrainian) 6. Chernousovs Zh.T., Dokuchaev M.A., Khibina M.A., Kirichenko V.V., Miroshnichenko S.G., Zhuravlev V.N., Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II, Trabalhos do departamento de matematica, Universidade de Sao Paulo, Instituto de matematica e estatistica, Sao Paulo-Brazil, 2003, 43 p. |
Pages |
3-8
|
Volume |
42
|
Issue |
1
|
Year |
2014
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |