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We study operators defined on Köthe function spaces which are uniformly bounded from
below at some sign functions supported on any fixed measurable set. Precise definition is a kind
of opposite to the definition of narrow operators, so many questions concerning the relationship
between narrow and wide operators naturally arise. The main questions are to describe how
“large” has to be a wide operator, and how “small” has to be an operator which is “nowhere”
wide. Some easy to formulate problems on wide operators turn out to be more involved than
their analogues for narrow operators, and most of the results have restrictive assumptions on
the domain spaces. We pose some open problems.
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// Мат. Студiї. – 2014. – Т.42, №1. – C.104–112.

Мы изучаем операторы, определенные на функциональных пространствах Кете, огра-
ниченные снизу на некоторых функциях-знаках, сосредоточенных на произвольном фик-
сированном измеримом множестве. Точное определение является, в определенном смысле,
противоположным к определению узкого оператора, а поэтому возникают естественные
вопросы о взаимоотношениях между узкими и широкими операторами. Основними во-
просами являются: насколько “большими” обязаны быть широкие операторы и насколько
“малыми” должны быть “нигде не широкие” операторы. Некоторые легко формулируемые
вопросы о широких операторах оказываются намного сложнее, чем их аналоги для уз-
ких операторов, и большинство результатов доказано при существенных ограничениях на
пространства. Сформулированы некоторые открытые вопросы.

1. Introduction.
1.1. About the paper. In this paper we introduce and study a new class of operators
defined on Köthe Banach spaces, called wide operators. By definition, these operators are
in an opposite position to narrow operators. More precisely, narrow operators take arbitrary
small values at sign functions supported on any fixed measurable set, and wide operators
are bounded from below at suitable sign functions supported on any fixed measurable set.
In some particular cases, wide operators are close to operators that are bounded from below
on a Haar type system.

The theory of narrow operators becomes more rich when one considers operators defined
on Lp(µ)-spaces for 1 ≤ p < 2 and especially on L1(µ)-spaces, see [5], [6, Section 7]. To the
contrast, in this paper we obtain more for operators acting on Lp(µ)-spaces for 2 < p <∞.

To deal with a narrow operator is much easier than with a wide operator. Indeed, if we
have two disjoint sign functions x and y with ‖Tx‖ < ε and ‖Ty‖ < ε then ‖Tx+ Ty‖ < 2ε
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as well, and so we can reduce a problem on a narrow operator to smaller parts. The same
tool fails for the condition ‖Tx‖ ≥ δ‖x‖. However, for a partial case of operators acting
on Lp(µ)-spaces with 2 < p < ∞ we can apply a similar tool which is given by Lemma 1
below. However in general, problems concerning wide operators are more involved, and in
this paper we have more questions than results.

1.2. Terminology and notation. We use the standard terminology and notation for the
Banach space theory as in [1], [3], [4]. If X and Y are Banach spaces then by L(X, Y ) we
denote the Banach space of all linear bounded operators from X to Y ; BX the closed unit
ball of X. If (Ω,Σ, µ) is a measure space and A ∈ Σ then we set

Σ(A) = {B ∈ Σ: B ⊆ A}; Σ+(A) = {B ∈ Σ(A) : µ(B) > 0};

1A the characteristic function of A; C = A t B means that C = A ∪ B and A ∩ B = ∅.
For the case of Ω = [0, 1] the same symbols Σ, µ stand for the σ-algebra of all Lebesgue
measurable subsets of [0, 1] and the Lebesgue measure respectively. For elements x, y ∈ L1(µ)
the inequality x ≤ y means that x(ω) ≤ y(ω) holds for almost all ω ∈ Ω. We say that a
Banach space E which is a linear subspace of L1(µ) is a Köthe Banach space on (Ω,Σ, µ)
if 1[0,1] ∈ E, E is solid and the norm of E is order monotone, that is, for every x ∈ L1 and
y ∈ E the condition |x| ≤ |y| implies that x ∈ E and ‖x‖ ≤ ‖y‖. If, moreover, ‖1Ω‖ = 1,
and for every x ∈ L1 and y ∈ E the condition d|x| = d|y| implies that x ∈ E and ‖x‖ = ‖y‖,
then the Köthe Banach space E is said to be a rearrangement invariant space (r.i. space,
in short) on (Ω,Σ, µ). Here dz(t) = µ{ω ∈ Ω: z(ω) > t} is the distribution of z. A Köthe
Banach space on a finite atomless measure space (Ω,Σ, µ) is said to have an
• absolutely continuous norm if lim

µ(A)→0
‖x · 1A‖ = 0 for each x ∈ E;

• absolutely continuous norm on the unit if limµ(A)→0 ‖1A‖ = 0.
It is clear that if E has an absolutely continuous norm then E has an absolutely continuous
norm on the unit, however the converse is not true ([6, Example 1.2]). For a Köthe Banach
space E and A ∈ Σ we set

E(A) = {x ∈ E : suppx ⊆ A}.

We also denote Lp = Lp[0, 1].
Let (Ω,Σ, µ) be a finite atomless measure space and A ∈ Σ. An element x ∈ L∞(µ) is

called a sign on A if x2 = 1A, that is, x = 1B − 1C for a suitable decomposition A = B tC
with B,C ∈ Σ. A sign x is said to be of mean zero (or, a mean zero sign) if

∫
Ω
x dµ = 0, that

is, µ(B) = µ(C) = µ(A)/2 for the above decomposition. Let E be a Köthe Banach space on
(Ω,Σ, µ) and X a Banach space. An operator T ∈ L(E,X) is called narrow if for each A ∈ Σ
and ε > 0 there is a mean zero sign x on A such that ‖Tx‖ < ε. An operator T ∈ L(E,X)
is called a sign-embedding if there is δ > 0 such that ‖Tx‖ ≥ δ‖x‖ for each sign x.

1.3. Definition, examples and questions.

Definition 1. Let E be a Köthe Banach space on a finite atomless measure space (Ω,Σ, µ),
X a Banach space. We say that an operator T ∈ L(E,X) is wide if there is δ > 0 such that
for every A ∈ Σ there is a mean zero sign x on A with ‖Tx‖ ≥ δ‖x‖. In this case we say that
T is wide with the constant δ. An operator T ∈ L(E,X) is called somewhere wide if there
is A ∈ Σ+ such that the restriction T |E(A) is wide; otherwise T is said to be nowhere wide.
An operator T ∈ L(E,X) is called hereditarily wide if for every A ∈ Σ+ and every atomless
subσ-algebra Σ1 of Σ(A) the restriction T |E(Σ1) is wide.
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By definition, a hereditarily wide operator is wide, and a wide operator is somewhere wide.
Obviously, a sign embedding is a wide operator. However, no other implication is obvious.
The following natural questions are the main subjects of investigation in the present paper.

(i) What “small” operators are nowhere wide? How “small” has to be a nowhere wide
operator?

(ii) What “large” operators are wide? How “large” has to be a wide operator?
(iii) What is the connection between narrow and wide operators? In particular, is there an

operator which is both narrow and wide? Is there a wide hereditarily narrow operator?
A narrow hereditarily wide operator? A hereditarily narrow hereditarily wide operator?

(iv) Is there an operator which is both nonnarrow and nonwide?

Question (iv) has an obvious negative answer. Indeed, if Ω = A t B with A,B ∈ Σ+

then the operator PA : E → E defined by PAx = x · 1A, x ∈ E, which is well defined and
has norm one in any Köthe Banach space E on any finite atomless measure space (Ω,Σ, µ).
Obviously, PA is both nonnarrow and nonwide. So, we modify question (iv) as follows.

(iv’) Is there an operator which is both nonnarrow and nowhere wide?

A similar example shows that a sum of two nonwide operators could be wide: I = PA+PB.

(v) Is a sum of two nowhere wide operators nowhere wide?

2. Operators that are bounded from below on a Haar type system. Let (Ω,Σ, µ)
be a finite atomless measure space and G ∈ Σ+. A collection (Gm,k)

∞ 2m

m=0,k=1 of sets Gm,k ∈ Σ
is called a tree of sets (or, more precisely, a tree of sets on the set G) if G0,1 = G and

Gm,k = Gm+1,2k−1 tGm+1,2k with µ(Gm+1,2k−1) = µ(Gm+1,2k) =
1

2
µ(Gm,k)

form ∈ {0, 1, . . .} and k ∈ {1, . . . , 2m}. The corresponding system of functions (gi)
∞
i=1 defined

by g1 = 1G0,1 and g2m+k = 1Gm+1,2k−1
− 1Gm+1,2k

for m ∈ {0, 1, . . .} and k ∈ {1, . . . , 2m} is
called a Haar type system (or, more precisely, a Haar type system supported on the set G).

A very important partial case appears if we consider the dyadic tree of sets Ikm, m ∈
{0, 1, . . .}, k ∈ {1, . . . , 2m} on [0, 1], that is, Ikm =

[
k−1
2m
, k

2m

)
. The corresponding Haar type

system is called the Haar system on [0, 1].

Proposition 1. Let E be a Köthe Banach space on a finite atomless measure space (Ω,Σ, µ),
X a Banach space. If an operator T ∈ L(E,X) is wide then there exist a Haar type system
(gn)∞n=1 supported on Ω and δ > 0 such that ‖Tgn‖ ≥ δ‖gn‖ for n ∈ {2, 3, . . .}.

Remark that, since a wide operator need not send 1Ω to a nonzero element of X, the
condition ‖Tgn‖ ≥ δ‖gn‖ is claimed only for n ∈ {2, 3, . . .} (we have that g1 = 1Ω for
any Haar type system (gn)∞n=1 supported on Ω). Indeed, the operator T ∈ L(E) defined by
Tx = x − (

∫
Ω
x dµ) · 1Ω is wide, because Tx = x for any mean zero sign, and sends 1Ω to

zero.

Proof of Proposition 1. Let T ∈ L(E,X) be wide with a constant δ. Surely, we set g1 = 1Ω

and G0,1 = G = Ω. Choose a mean zero sign g2 on [0, 1] so that ‖Tg2‖ ≥ δ. Then for
G1,1 = {t : g2(t) = 1} and G1,2 = {t : g2(t) = −1} choose mean zero signs g3 on G1,1 and g4

on G1,2 so that ‖Tgi‖ ≥ δ‖gi‖ for i ∈ {3, 4}. Processing like that, we construct the desired
Haar type system.
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In a partial case, a kind of converse statement holds.

Theorem 1. Let (Ω,Σ, µ) be a finite measure space, 2 ≤ p < ∞ and T ∈ L
(
Lp, Lp(µ)

)
be

an operator for which there are δ > 0 and n0 ∈ N such that ‖Thn‖ ≥ δ‖hn‖ for all n ≥ n0,
where (hn) is the Haar system on [0, 1]. Then T is wide.

We need two lemmas, first of which is known.

Lemma 1 (Lemma 7.63, [6]). Let (Ω,Σ, µ) be a finite atomless measure space and 2 ≤
p < ∞. Then for each n ∈ N and each vectors (zk)

n
k=1 in Lp(µ) there is a collection of sign

numbers (θk)
n
k=1, θk ∈ {−1, 1} such that∥∥∥ n∑

k=1

θkzk

∥∥∥ ≥ ( n∑
k=1

‖zk‖p
)1/p

.

Lemma 2. Let E be a Köthe Banach space on a finite atomless measure space (Ω,Σ, µ)
with an absolutely continuous norm on the unit. Let X be a Banach space and T ∈ L(E,X).
Assume that there is δ > 0 such that for every A ∈ Σ and every ε > 0 there is a sign x such
that |

∫
Ω
x dµ| < ε and ‖Tx‖ ≥ δ‖x‖. Then T is wide.

Proof of Lemma 2. Fix any A ∈ Σ+. Using the absolute continuity of the norm on the unit,
choose η > 0 such that for any B ∈ Σ the inequality µ(B) < η implies ‖1B‖ < δ‖1A‖

4‖T‖ .
Then choose a sign x on A such that |

∫
Ω
x dµ| < 2η and ‖Tx‖ ≥ δ‖x‖. With no loss of

generality we may and do assume that
∫

Ω
x dµ ≥ 0, otherwise we consider −x instead of

x. Set A+ = {t : x(t) = 1} and A− = {t : x(t) = −1}. By the above, A = A+ t A− and
µ(A+) ≥ µ(A−). Using the atomlessness of µ, we choose A0 ∈ Σ(A+) so that

µ(A0) =
1

2

(
µ(A+)− µ(A−)

)
=

1

2

∫
Ω

x dµ < η. (1)

Then we set x = x− 21A0 . Observe that x is a sign on A, so, ‖x‖ = ‖x‖ = ‖1A‖. Moreover,∫
Ω
x dµ = 0, that is, x is of mean zero. By (1) and the choice of η,

‖x− x‖ = 2‖1A0‖ <
δ‖1A‖
2‖T‖

=
δ‖x‖
2‖T‖

.

Thus we obtain

‖Tx‖ ≥ ‖Tx‖ − ‖T‖‖x− x‖ ≥ δ‖x‖ − ‖T‖ δ‖x‖
2‖T‖

=
δ

2
‖x‖.

Proof of Theorem 1. We show that for every A ∈ Σ+ there exists a sign x on A such that
‖Tx‖ ≥ δ

2
‖x‖. Fix any A ∈ Σ+ and ε > 0. Choose m ∈ N and a subset J ⊆ {1, . . . , 2m} so

that
µ(A4B)1/p < min

{ δ

2(δ + ‖T‖)
, ε
}
, (2)

where B =
⋃
j∈J I

j
m. Using the obvious property of the Haar system, without loss of gene-

rality, we assume that 2m ≥ n0. By Lemma 1 choose sign numbers θj ∈ {−1, 1} so that∥∥∥∑
j∈J

θjTh2m+j

∥∥∥ ≥ (∑
j∈J

‖Th2m+j‖p
)1/p

.
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Then, by the assumptions that 2m ≥ n0 and ‖Thn‖ ≥ δ‖hn‖ for n ≥ n0 for

x =
∑
j∈J

θjh2m+j

we obtain

‖Tx‖ =
∥∥∥∑
j∈J

θjTh2m+j

∥∥∥ ≥ δ
(∑
j∈J

2−m
)1/p

= 2−m/p · δ|J |1/p = δµ(B)1/p = δ‖x‖.

Since supph2m+j = Ijm and |x(t)| = 1 for t ∈ Ijm, we have that x is a sign on B. Now we set
x = x · 1A + 1A\B and observe that x2 = 1A and ‖x− x‖p ≤ µ(A4B). Then

‖Tx‖ ≥ ‖Tx‖ − ‖T‖‖x− x‖ by (3)
= δ‖x‖ − ‖T‖‖x− x‖ ≥

≥ δ‖x‖ − δ‖x− x‖ − ‖T‖‖x− x‖ ≥ ‖x‖
(
δ − µ(A4B)1/p

(
δ + ‖T‖

)) by (2)

≥ δ

2
‖x‖.

It remains to observe that∣∣∣∫
Ω

x dµ
∣∣∣ ≤ ∣∣∣∫

Ω

x dµ
∣∣∣+
∣∣∣∫

Ω

(x− x) dµ
∣∣∣ ≤ 0 + µ(A4B)

by (2)
< ε.

By Lemma 2, T is wide.

We do not know if Theorem 1 is true for 1 ≤ p < 2.

Problem 1. Let 1 ≤ p < 2 and T ∈ L(Lp). Assume that ‖Thn‖ ≥ δ‖hn‖ for some δ > 0
and all n. Is then T wide?

3. Operators that are narrow and wide. We show that such operators exist on r.i.
spaces on [0, 1] with an unconditional basis.

Definition 2. Let E be a Köthe Banach space on a finite atomless measure space (Ω,Σ, µ).
We say that an operator T ∈ L(E) is double-sided narrow if both operators T and Id − T
are narrow, where Id is the identity operator on E.

In other words, if Id is represented as a sum of two narrow operators Id = S + T then
both S and T are defined to be double-sided narrow. The existence of double-sided narrow
projections is proved for any r.i. Banach space E on [0, 1] with an unconditional basis ([6,
Theorem 5.2]).

Proposition 2. Let E be a Köthe Banach space on a finite atomless measure space (Ω,Σ, µ).
Then an operator T ∈ L(E) is wide whenever Id− T is narrow. In particular, every double-
sided narrow operator T ∈ L(E) is wide.

Proof. Let T ∈ L(E) be any operator with Id−T narrow. We show that T is wide with any
fixed number δ ∈ (0, 1). Given any A ∈ Σ, we choose a mean zero sign x on A so that

‖x− Tx‖ = ‖(Id− T )x‖ < (1− δ)‖x‖.

Then
‖Tx‖ ≥ ‖x‖ − ‖x− Tx‖ > ‖x‖

(
1− (1− δ)

)
= δ‖x‖.
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As a consequence of Proposition 2 and [6, Theorem 5.2] we obtain the following assertion.

Corollary 1. Let E be an r.i. space on [0, 1] with an unconditional basis. Then there is
a projection on E which is both narrow and wide.

Now consider the case E = L1. Since the sum of two narrow operators on L1 is narrow ([6,
Theorem 7.46]) and the identity operator on L1 is not narrow, there is no double-sided narrow
operator T ∈ L(L1). So, the above method of constructing operators that are both narrow
and wide fails for E = L1. In return, the following tool works only for E = L1.

Proposition 3. Consider the integration operator with respect to the second variable on
L1[0, 1]2 defined by

(Px)(s, t) =

∫
[0,1]

x(s, t′) dt′ (3)

for each x ∈ L1[0, 1]2. Then P is both narrow and wide.

Observe that P is the conditional expectation operator with respect to the sub-σ-algebra
Σ× {[0, 1]} of the Lebesgue σ-algebra on [0, 1]2.

Proof. By [6, Theorem 4.10], P is narrow. Moreover, P is strictly narrow, that is, for every
measurable subset A ⊆ [0, 1]2 there is a mean zero sign x on A such that Px = 0. Now
we show that P is wide with constant 1. Given any measurable subset A ⊆ [0, 1]2, choose
a number τ ∈ (0, 1) so that µ{(x, y) ∈ A : x < τ} = µ(A)/2 (this is possible because the
function f : [0, 1] → [0, µ(A)] given by f(t) = µ{(x, y) ∈ A : x < t} is continuous, f(0) = 0
and f(1) = µ(A)). Then set B = {(x, y) ∈ A : x < τ}, C = A \B, x = 1B − 1C . Then

x2 = 1A,

∫∫
[0,1]2

x dµ = 0 and
∣∣(Px)(s, t)

∣∣ =

∫
[0,1]

1A(s, t′) dt′

and hence, by the Fubini Theorem,

‖Px‖ =

∫
[0,1]

ds

∫
[0,1]

dt

∫
[0,1]

1A(s, t′) dt′ =

∫
[0,1]

ds

∫
[0,1]

1A(s, t′) dt′ = µ(A) = ‖x‖.

It is interesting to note that for p > 1 this is not the case. More precisely, the operator defi-
ned by (3) is well defined in Lp[0, 1]2 for 1 < p ≤ ∞ and is strictly narrow (this immediately
follows from the continuity of the inclusion embedding Lp ⊆ L1 and the strict narrowness of
P in L1; see [6, Chapter 4.2]), however P is not wide.

Proposition 4. The integration operator with respect to the second variable on Lp[0, 1]2

defined by (3) is nowhere wide if 1 < p ≤ ∞.

Proof. Let A ⊆ [0, 1]2 be any measurable subset of positive measure. Given any ε > 0, we
choose n ∈ N so that

µ(A)1/p n1− 1
p >

1

ε
if p <∞ and

1

n
< ε if p =∞. (4)
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Then choose i ∈ {1, . . . , n} so that µ(Ai) ≥ µ(A)/n, where Ai = A ∩
(
[0, 1] ×

[
i−1
n
, i
n

))
(such a number i exists because otherwise µ(A) =

∑n
k=1 µ(Ak) < µ(A), a contradiction). Let

x be any sign on Ai. Then, on the one hand,

‖x‖ = µ(Ai)
1/p ≥ µ(A)1/p

n1/p
if p <∞ and ‖x‖ = 1 if p =∞.

On the other hand,

‖Px‖p =

∫
[0,1]

ds

∫
[0,1]

dt
(∫

[0,1]

1Ai
(s, t′) dt′

)p
≤

≤
∫

[0,1]

ds

∫
[0,1]

dt
(∫

[0,1]

1[ i−1
n
, i
n

)(s, t′) dt′)p =

∫
[0,1]

ds

∫
[0,1]

dt
1

np
=

1

np

if p <∞ and

‖Px‖∞ = sup
s

∫
[0,1]

1Ai
(s, t′) dt′ ≤ sup

s

∫
[0,1]

1[ i−1
n
, i
n

)(s, t′) dt′ = 1

n
.

Thus, in view of (4), we obtain that

‖Px‖
‖x‖

≤
1
n

µ(A)1/p

n1/p

=
1

µ(A)1/p n1− 1
p

< ε

if p <∞ and
‖Px‖∞
‖x‖∞

≤ 1

n
< ε.

We do not have such examples for Köthe Banach spaces on [0, 1] that are not r.i.

Problem 2. Does in every Köthe Banach space E on [0, 1] there exist an operator T ∈ L(E)
which is narrow and wide?

For E = Lp with p > 2 we obtain much more.

Proposition 5. Let 2 < p <∞. Then there is an operator T ∈ L(Lp) which is hereditarily
narrow and wide.

Proof. Since Lp contains a subspace isometrically isomorphic to `p, it is enough to construct a
hereditarily narrow wide operator T ∈ L(Lp, `p). Let (hn)∞n=1 be the normalized Haar system
in Lp, that is, h1 = 1[0,1], h2m+k = 2m/ph2m+k for m ∈ {0, 1, 2, . . .} and k ∈ {1, 2, . . . , 2m}.
Denote by (en)∞n=1 the unit vector basis of `p. By the Orlicz theorem [2, p. 101], there
exists an operator T ∈ L(Lp, `p) such that Thn = en for all n ∈ N. Thus, we have that
‖Th2m+k‖ = 2−m/p = ‖h2m+k‖. By Theorem 1, T is wide. By [6, Corollary 11.4], every linear
bounded operator from Lp to `p is hereditarily narrow, and so is T .

Problem 3. Let 1 ≤ p ≤ 2. Does there exist an operator T ∈ L(Lp) which is hereditarily
narrow and wide?

4. Nowhere wide operators. The results of this section assert that nowhere wide operators
are “small”. Recall that an operator T ∈ (X, Y ) between Banach spaces X and Y is called:
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• compact if TBX is a relatively compact subset of Y ;

• a Dunford-Pettis operator if T sends weakly null sequences to norm null sequences.

It is not very hard to show that every compact operator is a Dunford-Pettis operator.
For some pairs of Banach spaces (X, Y ) the converse is also true. However, for example, for
X = Y = L1 the converse is not true.

Theorem 2. Let (Ω,Σ, µ) be a finite atomless measure space, (Ω1,Σ1, ν) a finite measure
space, 2 ≤ p < ∞, X a Banach space. Then every Dunford-Pettis operator T ∈ L

(
Lp(µ),

Lp(ν)
)
is nowhere wide.

Proof. Let T ∈ L
(
Lp(µ), Lp(ν)

)
be a Dunford-Pettis operator. Assume, on the contrary, that

T |Lp(A) is wide with a constant δ > 0 for some A ∈ Σ+. Our goal is to construct a sequence
(rn)∞n=1 of probabilistically independent mean zero signs on A with ‖Trn‖ ≥ δµ(A)1/p, which
is impossible because rn

w−→ 0 in Lp(µ). We start with picking any mean zero sign r1 on A
with ‖Tr1‖ ≥ δµ(A)1/p. Then set A2 = {t : r1(t) = 1} and A3 = {t : r1(t) = −1}. Since r1 is
of mean zero, µ(A2) = µ(A3) = µ(A)/2. Choose mean zero signs r2,1 on A2 and r2,2 on A3 so
that ‖Tr2,1‖ ≥ δ(µ(A)/2)1/p and ‖Tr2,2‖ ≥ δ(µ(A)/2)1/p. Then by Lemma 1 we choose sign
numbers θ2,1, θ2,2 ∈ {−1, 1} so that for r2 = θ2,1r2,1 + θ2,2r2,2 one has

‖Tr2‖ ≥
(
‖Tr2,1‖p + ‖Tr2,2‖p

)1/p

≥ δ
(µ(A)

2
+
µ(A)

2

)1/p

= δµ(A)1/p.

On the third step, we define A4, A5, A6, A7 by

A4 = {t : r2,1 = 1}, A5 = {t : r2,1 = −1}, A6 = {t : r2,2 = 1}, A7 = {t : r2,2 = −1},

and choose mean zero signs r3,i on A3+i, i ∈ {1, 2, 3, 4} with ‖Tr3,i‖ ≥ δ(µ(A)/4)1/p. Using
Lemma 1, we choose sign numbers θ3,i so that for r3 =

∑4
i=1 θ3,ir3,i one has

‖Tr3‖ ≥
( 4∑
i=1

‖Tr3,i‖p
)1/p

≥ δ
( 4∑
i=1

µ(A)

4

)1/p

= δµ(A)1/p.

Processing like above, we construct the desired sequence.

Let E be a Köthe Banach space on a finite atomless measure space (Ω,Σ, µ), and let X
be a Banach space. Following [6, Definition 7.58], an operator T ∈ L(E,X) we call somewhat
narrow if for each A ∈ Σ and each ε > 0 there exists a set B ∈ Σ(A) and a sign x on B such
that ‖Tx‖ < ε‖x‖. The next proposition immediately follows from the definitions.

Proposition 6. Let E be a Köthe Banach space on a finite atomless measure space (Ω,Σ, µ),
and let X be a Banach space. Then every nowhere wide operator T ∈ L(E,X) is somewhat
narrow.

By [6, Theorem 7.59], if 1 ≤ p ≤ 2 then every somewhat narrow operator T ∈ L(Lp) is
narrow. So, as a consequence, we obtain the following assertion.

Corollary 2. Let 1 ≤ p ≤ 2. Then every nowhere wide operator T ∈ L(Lp) is narrow.

Problem 4. Let E be a Köthe Banach space on a finite atomless measure space (Ω,Σ, µ)
with an absolutely continuous norm on the unit, and let X be a Banach space. Is every
Dunford-Pettis operator T ∈ L(E,X) nowhere wide? What about E = Lp(µ) for 1 ≤ p ≤ 2?
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