Generalized moment representations and Pade approximants of analytic two-variable functions(in Ukrainian) |
|
| Author |
chernets.liliya@yandex.ua
Institute of Mathematics NASU
|
| Abstract |
The theorems on construction of rational approximation by means of the method of
generalized moment representations are generalized. Under conditions of the generalized theorems
the formulas for the errors of approximation are established. The two-dimensional Pade approximants for some analytic
two-variable functions are constructed.
|
| Keywords |
Pade approximation; biorthogonal polynomial; Appell series
|
| DOI |
doi:10.30970/ms.41.2.201-213
|
| Reference |
1. Golub A.P., Chernetska L.O. Two-dimensional generalized moment representations and rational approximants
of two-variable functions// Ukr. Mat. Zh. – 2013. – V.65, №8. – P. 1035–1058. (in Ukrainian)
2. Golub A.P., Chernetska L.O. Two-dimensional generalized moment representations and Pade approximants for some Humbert series// Ukr. Mat. Zh. – 2013. – V.65, №10. – P. 1315–1331. (in Ukrainian) 3. Dzjadyk V.K. On a generalization of the moment problem// Dokl. Akad. Nauk Ukrain. – 1981. – V.6. – P. 8–12. (in Ukrainian) 4. Alabiso C., Butera P. $N$-variable rational approximants and method of moments// J. Math. Phys. – 1975. – V.16, №4. – P. 840–845. 5. Cuyt A. How well can the concept of Pade approximant be generalized to the multivariate case?// J. Comput. Appl. Math. – 1999. – V.105, №1,2. – P. 25–50. 6. Hughes Jones R. General rational approximants in $N$ variables// J. Approx. Theory. – 1976. – V.16. – P. 201 – 233. 7. Lutterodt C. A two-dimensional analogue of Padґe approximant theory// J. Phys. A.: Math. – 1974. – V.7. – P. 1027–1037. 8. Zhou P. Explicit construction for multivariate Padґe approximants// J. Comput. Appl. Math. – 1997. – V.79. – P. 1–17. 9. Cuyt A., Driver K., Tan J., Verdonk B. Exploring multivariate Padґe approximants for multiple hypergeometric series// Adv. Comput. Math. – 1999. – V.10, №1. – P. 29–49. 10. Cuyt A., Tan J., Zhou P. General order multivariate Padґe approximants for pseudo-multivariate functions// Math. Comput. – 2006. – V.75, №254. – P. 727–741. 11. Borwein P.B., Cuyt A., Zhou P. Explicit construction of general multivariate Pade approximants to an Appell function// Adv. Comput. Math. – 2005. – V.22, №3. – P. 249–273. 12. Baker G.A., Graves–Morris P.R. Pade approximants. – M.: Mir, 1986. – 502 p. (in Russian) 13. Rudin W. Functional analysis. – M.: Mir, 1975. – 444 p. (in Russian) 14. Bateman H., Erdelyi A. Higher transcendental functions. – M.: Nauka, 1973, V.1. – 296 p. (in Russian) 15. Kantorovich L.V., Akilov G.P. Functional analysis. – M.: Nauka, 1977. – 744 p. (in Russian) 16. Abramowitz M., Stegun I. Handbook of mathematical functions with formulas, graphs and mathematical tables. – M.: Nauka, 1979. – 832 p. (in Russian) 17. Karlin S., Studden W.J. Tchebycheff systems: with applications in analysis and statistics. – M.: Nauka, 1976. – 568 p. (in Russian) |
| Pages |
201-213
|
| Volume |
41
|
| Issue |
2
|
| Year |
2014
|
| Journal |
Matematychni Studii
|
| Full text of paper | |
| Table of content of issue |