Discontinuity of bilaterally quasi-continuous transitional functions(in Ukrainian) |
|
Author |
math.analysis.chnu@gmail.com
Yuriy Fedkovych Chernivtsi National University
|
Abstract |
It is shown that the set of points of discontinuity of bilaterally quasi-continuous transitional function $f\colon \mathbb{R}\to \mathbb{R}$ has no isolated points. For any perfect nowhere dense subset $F$ of nondegenerate segment $J\subseteq \mathbb{R}$ bilaterally quasi-continuous transitional function $f\colon J\to \mathbb{R}$ such that $F$ is the set of points of discontinuity of $f$ is constructed.
|
Keywords |
bilateral quasicontinuity; transitional function; set of points of discontinuity
|
Reference |
1. Kretsu V.I., Maslyuchenko V.K. Stalling continuity, separate continuity and closed graph functions//
Nauk. Visn. Chernivetskogo Univ., Mat. 2007. V.349. P. 5054. (in Ukrainian)
2. Maslyuchenko V.K., Nesterenko V.V. Decomposition of continuity and transition maps// Mat. Visn. Nauk. Tov. Im. Shevchenka. 2011. V.8. P. 132150. (in Ukrainian) 3. Maslyuchenko V.K., Nesterenko V.V. Weak Darboux property and transitivity of linear mappings in topological vector spaces// Carp. Math. Publ. 2013. V.5, Ή1. P. 7988. (in Ukrainian) 4. Dobos J. Functions with a closed graph and bilateral quasicontinuity// Tatra Mt. Math. Publ. 1993. V.2. P. 7780. 5. Kechris A. Classical descriptive set theory. Springer, 1995. 6. Aleksandrov P.S. Introduction to set theory and general topology. M.: Nauka, 1977. (in Russian) 7. Banakh T.O., Maslyuchenko V.K., Mykhaylyuk V.V., Pshenychko M.I. Discontinuity points of almost continuous functions// Mat. Stud. 2000. V.14, Ή1. P. 8996. (in Ukrainian) 8. Gibson R.G., Natkaniec T. Darboux like functions// Real Anal. Exch. 1997. V.22, Ή2. P. 492533. |
Pages |
18-27
|
Volume |
41
|
Issue |
1
|
Year |
2014
|
Journal |
Matematychni Studii
|
Full text of paper | |
Table of content of issue |