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Мы рассматриваем бар и кобар конструкции как функторы между некоторыми кате-
гориями кривых алгебр и кривых увеличенных коалгебр над градуированным коммута-
тивным кольцом. Эти функторы сопряжены друг с другом.

In this paper we recall some notions and reproduce some results from Positselski
[5, 6] in a modified form. Our exposition differs in two aspects: firstly, we work over a graded
commutative ring k instead of a field or a topological local ring, secondly, we modify the
definitions of categories of curved algebras and curved coalgebras.

The advantage of using graded commutative rings over usual commutative rings is that it
allows to place (co)derivations of certain degree on equal footing with (co)algebra homomor-
phisms. Take note of the last condition in the following definition.

Definition 1. A graded strongly commutative ring is a graded ring k such that ba =
(−1)|a|·|b|ab for all homogeneous elements a, b and c2 = 0 for all elements c of an odd
degree.

The first condition implies only that 2c2 = 0 for elements c of an odd degree.
We give explicit formulae and detailed proofs. Motivations come from A∞-algebras and

A∞-coalgebras.
For any graded k-module M and an integer a denote by M [a] the same module with the

grading shifted by a: M [a]k = Ma+k. Denote by σa : M → M [a], Mk 3 x 7→ x ∈ M [a]k−a

the “identity map” of degree deg σa = −a. Write elements of M [a] as mσa. Typically, a map
is written on the right of its argument. The composition of X f−→ Y

g−→ Z is denoted by
f · g : X → Z or simply by fg. If f : V → X is a homogeneous map of certain degree, the
map f [a] : V [a] → X[a] is defined as f [a] = (−1)adeg fσ−afσa = (−1)afσ−afσa. The tensor
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product of homogeneous maps f , g between graded k-modules is defined at elements x, y of
a certain degree as

(x⊗ y).(f ⊗ g) = (−1)deg y·deg fx.f ⊗ y.g.
Thus, the Koszul sign rule holds and we deal in the closed symmetric monoidal category gr
of graded k-modules with the symmetry x⊗ y 7→ (−1)deg x·deg yy ⊗ x.
1. Curved (co)algebras. We define curved algebras and curved coalgebras as well as their
morphisms are suitable for our purposes.

1.1. Curved algebras. We begin with curved algebras of various kinds.

Definition 2. A strict-unit-complemented curved A∞-algebra (A, (bn)n>0,η,v) consists of
a graded k-module A, degree 1 maps bn : A[1]⊗n → A[1] (operations) for n > 0, a degree −1
map η : k → A[1] (strict unit) and a degree 1 map v : A[1] → k (splitting of the unit) such
that ∑

r+k+t=n

(1⊗r ⊗ bk ⊗ 1⊗t)br+1+t = 0: A[1]⊗n → A[1], ∀n > 0, (1)

(1⊗ η)b2 = 1A[1], (η ⊗ 1)b2 = −1A[1], (1⊗a ⊗ η ⊗ 1⊗c)ba+1+c = 0 if a+ c 6= 1, η · v = 1k.

For any graded k-module X the tensor k-module XT> = ⊕n>0X
⊗n is equipped with the

cut coproduct

(x1 · · ·xn)∆ =
n∑
k=0

x1 · · · xk ⊗ xk+1 · · ·xn.

The collection b̌ = (bn)n>0 : A[1]T> → A[1] amounts to a degree 1 coderivation b : A[1]T> →
A[1]T> of the counital coassociative coalgebra A[1]T>,

b| =
∑

r+k+t=n

1⊗r ⊗ bk ⊗ 1⊗t : A[1]⊗n → A[1]T>.

Equation (1) is equivalent to b2 = 0.
Getting rid of the shift [1] we rewrite the above operations as in [3, (0.7)]

mn = (−1)nσ⊗n · bn · σ−1 : A⊗n → A, degmn = 2− n, n > 0,

η =
(
k η→ A[1]

σ−1

→ A
)
, deg η = 0, v =

(
A

σ→ A[1]
v→ k

)
, deg v = 0.

In these terms Definition 2 becomes the following one.

Definition 3. A strict-unit-complemented curved A∞-algebra (A, (mn)n>0, η, v) consists of a
graded k-module A, maps mn : A⊗n → A of degree 2− n (operations) for n > 0, a degree 0
map η : k→ A (strict unit) and a degree 0 map v : A→ k (splitting of the unit) such that∑

j+p+q=n

(−1)jp+q(1⊗j ⊗mp ⊗ 1⊗q) ·mj+1+q = 0: A⊗n → A, ∀n > 0, (2)

(1⊗ η)m2 = 1A, (η ⊗ 1)m2 = 1A, (1⊗a ⊗ η ⊗ 1⊗c)ma+1+c = 0 if a+ c 6= 1, η · v = 1k.

Restricting the above notion we give the following definition.

Definition 4. A unit-complemented curved algebra (A,m2,m1,m0, η, v) is a strict-unit-
complemented curved A∞-algebra A with the strict unit η and with mn = 0 for n > 2.
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For such an algebra A equations (2) reduce to the system

(1⊗m2)m2 = (m2 ⊗ 1)m2, m2m1 = (1⊗m1 +m1 ⊗ 1)m2, m
2
1 = (m0 ⊗ 1− 1⊗m0)m2,

m0m1 = 0, (1⊗ η)m2 = 1, (η ⊗ 1)m2 = 1, ηm1 = 0, ηv = 1k,

which tells that A is a unital associative graded algebra (A,m2, η) of degree 1 derivation m1,
whose square is an inner derivation, that is, a commutator with an element m0 (curvature)
of degree 2 and m0m1 = 0. A direct complement A = Ker v to the k-submodule η : k ↪→ A
is chosen.

The following example of a unit-complemented curved algebra was considered by Posi-
tselski in [5, Section 0.6], see also [4].

Example 1. Let M be a smooth manifold, let E → M be a smooth vector bundle, k = R.
Denote Ωk(E) = Γ(E ⊗ ∧kT ∗M), k ∈ N. Let ∇ : Ω0(E) → Ω1(E) be a connection on E
which is viewed as a covariant exterior derivative ∇ : Ωk(E)→ Ωk+1(E) such that

∀ τ ∈ Ω•(E) ∀ω ∈ Ω•(M) (τω)∇ = (−1)ω(τ∇) · ω + τ · (ωd).

The category of vector bundles on M is Cartesian closed. The evaluation map ev : E ×
EndE → E leads to the action Ωk(E) ⊗ Ωn(EndE) → Ωk+n(E). Moreover, elements h ∈
An = Ωn(EndE) can be identified with Ω•(M)-linear maps h : Ωk(E) → Ωk+n(E), thus,
(τω)h = (−1)n|ω|(τh)ω. For instance, the curvature 2-form −m0 = ∇2 is a Ω•(M)-linear
map, hence an element of Ω2(EndE).

The graded algebra A• = Ω•(EndE) equipped with the derivation (h)dA = h · ∇ −
(−1)h∇ · h (which is a covariant exterior derivative on the vector bundle EndE) and with
the curvature element m0 ∈ A2 is a curved algebra since (h)d2

A = m0h− hm0, (m0)dA = 0.
The latter equation is the Bianchi identity.

A morphism between curved A∞-algebras A and B should be given by a family of
components fn : A[1]⊗n → B[1], n > 0. The obtained matrix entries

fkn =
∑

i1+···+ik=n

fi1 ⊗ fi2 ⊗ · · · ⊗ fik : A[1]⊗n → B[1]⊗k

define a map f : A[1]T> → B[1]T̂>, which in general does not factor through B[1]T>. The
equation fb = bf , which we write as∑

i1+···+ik=n

(fi1 ⊗ fi2 ⊗ · · · ⊗ fik)bBk =
∑

r+k+t=n

(1⊗r ⊗ bAk ⊗ 1⊗t)fr+1+t,

also makes sense under some additional assumptions (like extra filtration [2] or topological
structure of k [6]). We shall consider only curved algebras B, which insures that the sum in
the left hand side is finite. Moreover, we assume that components fn vanish for n > 1 and
f0 is of the form

f0 =
(
k

f
→ k η→ B[1]

)
, (3)

where deg f = 1. The latter assumption was made in order to deal with augmented coalgebras
in bar and cobar constructions, which does not exclude that similar results could be obtained
under weaker assumptions.
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Definition 5. A morphism of unit-complemented curved algebras f : A→ B is a pair (f1, f)
consisting of k-linear maps f1 : A[1]→ B[1] of degree 0 and f : k→ k of degree 1 such that

(f1 ⊗ f1)bB2 = bA2 f1, f1b
B
1 = bA1 f1, bB0 = bA0 f1, ηAf1 = ηB. (4)

The composition h : A→ C of morphisms f : A→ B and g : B → C is h1 = f1g1, h = g+ f .

Under assumption (3) the expected conditions

f1b
B
1 + (f0 ⊗ f1)bB2 + (f1 ⊗ f0)bB2 = bA1 f1, b

B
0 + f0b

B
1 + (f0 ⊗ f0)bB2 = bA0 f1, h0 = g0 + f0g1

reduce to the given ones. In fact, f ∈ k1 implies f 2 = 0 due to graded commutativity of k,
see Definition 1.

The last equation of (4) tells that f1 preserves the unit. These equations can be rewritten
for conventional k-linear maps

f1 =
(
A

σ→ A[1]
f1→ B[1]

σ−1

→ B
)
, deg f1 = 0,

f0 =
(
k f0→ B[1]

σ−1

→ B
)

=
(
k

f
→ k η→ B

)
, deg f0 = 1,

as follows.

Definition 6. A morphism of unit-complemented curved algebras f : A→ B is a pair (f1, f)
consisting of k-linear maps f1 : A→ B of degree 0 and f : k→ k of degree 1 such that

(f1 ⊗ f1)mB
2 = mA

2 f1, f1m
B
1 = mA

1 f1, mB
0 = mA

0 f1, ηAf1 = ηB.

The composition h : A→ C of morphisms f : A→ B and g : B → C is h1 = f1g1, h = g + f .
The unit morphism is (id, 0). The category of unit-complemented curved algebras is denoted
UCCAlg.

In particular, f1 : A→ B is a morphism of unital associative graded algebras.

1.2. Curved coalgebras. Now we define curved coalgebras of various kinds.

Definition 7. A strict-counit-complemented curved A∞-coalgebra (C, (ξn)n>0, ε,w) consists
of a graded k-module C, degree 1 maps ξn : C[−1] → C[−1]⊗n (cooperations) for n > 0,
a degree −1 map ε : C[−1]→ k (strict counit) and a degree 1 map w : k→ C[−1] (splitting
of the counit) such that∑

r+k+t=n

ξr+1+t(1
⊗r ⊗ ξk ⊗ 1⊗t) = 0: C[−1]→ C[−1]⊗n, ∀n > 0, (5)

ξ2(1⊗ ε) = −1C[−1], ξ2(ε⊗ 1) = 1C[−1], ξa+1+c(1
⊗a ⊗ ε⊗ 1⊗c) = 0 if a+ c 6= 1,

w · ε = 1k, wξ2 = −w ⊗w.

For any graded k-module X its tensor algebra XT> = ⊕n>0X
⊗n is naturally embedded

into its completed tensor algebra XT̂> =
∏

n>0X
⊗n, ι : XT> ↪→ XT̂>. An arbitrary ι-deri-

vation ξ : XT> → XT̂> is determined by its restriction to generators ξ̌ : X → XT̂>. In
particular, the collection (ξn)n>0 amounts to a degree 1 ι-derivation ξ : C[−1]T> → C[−1]T̂>

and equations (5) can be interpreted as ξ2 = 0.
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Getting rid of the shift [−1] we rewrite the above via maps

δn = (−1)nσ−1 · ξn · σ⊗n : C → C⊗n, deg δn = 2− n, n > 0,

ε =
(
C

σ−1

→ C[−1]
ε→ k

)
, deg ε = 0, w =

(
k w→ C[−1]

σ→ C
)
, degw = 0.

In these terms Definition 7 becomes the following one.

Definition 8. A strict-counit-complemented curved A∞-coalgebra (C, (δn)n>0, ε,w) consists
of a graded k-module C, maps δn : C → C⊗n of degree 2 − n (cooperations) for n > 0,
a degree 0 map ε : C → k (strict counit) and a degree 0 map w : k → C (splitting of the
counit) such that∑

r+k+t=n

(−1)r+ktδr+1+t(1
⊗r ⊗ δk ⊗ 1⊗t) = 0: C → C⊗n, ∀n > 0, (6)

δ2(1⊗ ε) = 1C , δ2(ε⊗ 1) = 1C , δa+1+c(1
⊗a ⊗ ε⊗ 1⊗c) = 0 if a+ c 6= 1,

w · ε = 1k, wδ2 = w ⊗ w.

Restricting the above notion and adding a conilpotency condition we get the following
definition.

Definition 9. A curved augmented coalgebra (C, δ2, δ1, δ0, ε,w) is a strict-counit-comple-
mented curved A∞-coalgebra C with δn = 0 for n > 2 such that (C = Ker ε, δ2) is conilpotent.

For such a coalgebra C equations (6) reduce to the system

δ2(1⊗ δ2) = δ2(δ2 ⊗ 1), δ1δ2 = δ2(1⊗ δ1 + δ1 ⊗ 1), δ2
1 = δ2(1⊗ δ0 − δ0 ⊗ 1), δ1δ0 = 0,

δ2(1⊗ ε) = 1C , δ2(ε⊗ 1) = 1C , δ1ε = 0, w · ε = 1k, wδ2 = w ⊗ w,

which tells that C is a counital coassociative graded coalgebra (C, δ2, ε) of degree 1 coderi-
vation δ1, whose square is an inner coderivation determined by a functional δ0 : C → k
(curvature) of degree 2 and δ1δ0 = 0. The degree 0 map w : k → C is a homomorphism of
graded coalgebras, the augmentation of C. In particular, kw ↪→ C is a direct complement
to C = Ker ε. The non-counital graded coalgebra C equipped with the comultiplication
δ2 = δ2 − 1⊗ w − w ⊗ 1: C → C ⊗ C is conilpotent by assumption, that is,⋃

n>1

Ker(∆
(n)

: C → C
⊗n

) = C.

A morphism of curved A∞-coalgebras g : C → D should be a dg-algebra morphism
g : C[−1]T> → D[−1]T̂>, or, equivalently, a family of k-linear degree 0 maps gn : C[−1] →
D[−1]⊗n, n > 0, satisfying the equation gξ = ξg. However, to give sense to this equation in
the form∑

r+k+t=n

gr+1+t(1
⊗r ⊗ ξk ⊗ 1⊗t) =

∑
i1+···+ik=n

ξk(gi1 ⊗ gi2 ⊗ · · · ⊗ gik) : C[−1]→ D[−1]⊗n,

one has to make additional assumptions. We shall assume that C is a curved coalgebra and
gn vanish for n > 1. Moreover, we assume that g1 preserves the splitting w.
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Definition 10. A morphism of curved augmented coalgebras g : C → D is a pair (g1, g0)
consisting of k-linear maps g1 : C[−1]→ D[−1] and g0 : C[−1]→ k of degree 0 such that

ξC2 (g1 ⊗ g1) = g1ξ
D
2 , ξC1 g1 + ξC2 (g0 ⊗ g1 + g1 ⊗ g0) = g1ξ

D
1 ,

ξC0 + ξC1 g0 + ξC2 (g0 ⊗ g0) = g1ξ
D
0 , g1ε

D = εC , wCg1 = wD.

The composition h : C → E of morphisms f : C → D and g : D → E is given by h1 = f1g1,
h0 = f0 + f1g0.

Rewriting this definition in terms of maps

g1 =
(
C

σ−1

→ C[−1]
g1→ D[−1]

σ→ D
)
, deg g1 = 0,

g0 =
(
C

σ−1

→ C[−1]
g0→ k

)
, deg g0 = 1,

we give the following definition.

Definition 11. A morphism of curved augmented coalgebras g : C → D is a pair (g1, g0)
consisting of k-linear maps g1 : C → D of degree 0 and g0 : C → k of degree 1 such that

δC2 (g1 ⊗ g1) = g1δ
D
2 , δC1 g1 + δC2 (g0 ⊗ g1 − g1 ⊗ g0) = g1δ

D
1 ,

δC0 − δC1 g0 − δC2 (g0 ⊗ g0) = g1δ
D
0 , g1ε

D = εC , wCg1 = wD.

The composition h : C → E of morphisms f : C → D and g : D → E is given by h1 = f1g1,
h0 = f0 + f1g0. The unit morphism is (id, 0). The category of curved augmented coalgebras
is denoted CACoalg.

In particular, g1 is a morphism of augmented graded coalgebras. Actually, g0 occurs in
the equations only as its restriction g′0 = g0|C and validity of the equations does not depend
on g = wg0 ∈ k1. In fact, with the notation δC2 =

(
C ⊂ → C

δ2→ C ⊗ C prC ⊗ prC→ C ⊗ C
)
,

we have wδC2 (g0 ⊗ 1− 1⊗ g0) = (wg0)w − w(wg0) = 0, which implies that

δC2 (g0⊗ 1− 1⊗ g0) = prC(δ
C

2 + 1⊗w+w⊗ 1)(g0⊗ 1− 1⊗ g0) = prC δ
C

2 (g0⊗ 1− 1⊗ g0). (7)

Since wδC2 (g0 ⊗ g0) = (wg0)2 = 0, we find that

δC2 (g0 ⊗ g0) = prC(δ
C

2 + 1⊗ w + w ⊗ 1)(g0 ⊗ g0) = prC δ
C

2 (g0 ⊗ g0).

Thus Definition 11 can be reformulated as follows.

Definition 12. A morphism of curved augmented coalgebras g : C → D is a triple (g1, g
′
0, g)

consisting of a homomorphism of augmented graded coalgebras g1 : C → D, a k-linear map
g′0 : C → k of degree 1 and an element g ∈ k1 (of degree 1) such that

δC1 g1 + prC δ
C

2 (g′0 ⊗ g1 − g1 ⊗ g′0) = g1δ
D
1 : C → D,

δC0 − δC1 g′0 − prC δ
C

2 (g′0 ⊗ g′0) = g1δ
D
0 : C → k.

The composition h : C → E of morphisms f : C → D and g : D → E is given by h1 = f1g1,
h′0 = f ′0 + f1g

′
0, h = f + g. The unit morphism is (id, 0, 0).
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2. Bar and cobar constructions. We are going to prove the existence of two functors
between categories of curved algebras and curved coalgebras, generalizing the well known
bar and cobar constructions.

2.1. Bar-construction. Let us construct a functor Bar: UCCAlg → CACoalg, the bar-
construction. Let A = (A, (bn)n>0,η,v) be a strict-unit-complemented curved A∞-algebra.
The shift A[1] of the k-submodule A = Ker v ⊂ A is the image of an idempotent 1 − v ·
η : A[1]→ A[1], which we write as the projection pr = 1− v · η : A[1]→ A[1]. Define BarA
as A[1]T> equipped with the cut comultiplication δBarA

2 , the counit εBarA = pr0 : A[1]T> →
A[1]T 0 = k, the splitting wBarA = in0 : k = A[1]T 0 ↪→ A[1]T>, the degree 1 coderivation
δBarA

1 = b : A[1]T> → A[1]T> given by its components

bn =
(
A[1]⊗n ⊂ → A[1]⊗n

bn→ A[1]
pr→ A[1]

)
, n > 0,

and a degree 2 functional δBarA
0 = −

(
A[1]T> ⊂ → A[1]T>

b̌→ A[1]
v→ k

)
. Clearly, wBarA

is a graded coalgebra homomorphism and the coalgebra A[1]T> = A[1]T> with the cut
comultiplication is conilpotent.

Let us verify the necessary identities. Both sides of the equation

(δBarA
1 )2 = δBarA

2 (1⊗ δBarA
0 − δBarA

0 ⊗ 1) : A[1]T> → A[1]T>

are coderivations. Hence, the equation is equivalent to its composition with pr1 : A[1]T> →
A[1]. That is, to∑

r+k+t=n

(1⊗r ⊗ bk ⊗ 1⊗t)br+1+t = bn−1v ⊗ 1− 1⊗ bn−1v : A[1]⊗n → A[1]

for all n > 0. This holds true due to computation∑
r+k+t=n

(1⊗r ⊗ bk(1− vη)⊗ 1⊗t)br+1+t pr =

= −(1⊗ bn−1vη)b2 pr−(bn−1vη ⊗ 1)b2 pr = bn−1v ⊗ 1− 1⊗ bn−1v.

Furthermore, δBarA
1 δBarA

0 = −
(
A[1]T>

b→ A[1]T>
b̌→ A[1]

v→ k
)
vanishes due to

−
∑

r+k+t=n

(1⊗r ⊗ bk(1− vη)⊗ 1⊗t)br+1+tv =

= (1⊗ bn−1vη)b2v + (bn−1vη ⊗ 1)b2v = v ⊗ bn−1v − bn−1v ⊗ v = 0: A[1]⊗n → k,

because A[1]v = 0. Thus the object BarA of CACoalg is welldefined.
Let us describe the functor Bar: UCCAlg → CACoalg on morphisms. It takes a mor-

phism f = (f1, f0) : A→ B to the morphism Bar f = g = (g1, g0) : A[1]T> → B[1]T>, where
the coalgebra homomorphism Bar1 f = g1 = f is specified by its components

f 1 =
(
A[1] ⊂ → A[1]

f1→ B[1]
1−v·η→ B[1]

)
, f 0 =

(
k f0→ B[1]

1−v·η→ B[1]
)

= 0, (8)

and the degree 1 functional is

Bar0 f = g0 =
(
A[1]T> ⊂ → A[1]T>

f̌→ B[1]
v→ k

)
. (9)
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Notice that the coalgebra homomorphism f is strict, that is, it has only one non-vanishing
component, the first one. Thus, f preserves the number of tensor factors, f | = f

⊗n
1 : A[1]⊗n →

B[1]⊗n, n > 0. In particular, wBarAf = wBarB.
Let us check that g is indeed a morphism of CACoalg. It is required that bAg1 + ∆(g0 ⊗

g1 − g1 ⊗ g0) = g1b
B
. All terms of this equation are f -coderivations. Hence, the equation

follows from its composition with pr1. b
A
f̌ + ∆(g0⊗ f̌ − f̌ ⊗ g0) = f b̌

B
: A[1]T> → B[1], that

is, for all n > 0

bnf 1 + f0v ⊗ fn + f1v ⊗ fn−1 − fn ⊗ f0v − fn−1 ⊗ f1v =

=
∑

i1+···+ik=n

(f i1 ⊗ f i2 ⊗ · · · ⊗ f ik)bk : A[1]⊗n → B[1].

In detail,

bn(1− vη)f1 pr+
∑

i1+i2=n

(
fi1v ⊗ fi2 pr−fi1 pr⊗fi2v

)
=

=
∑

i1+···+ik=n

[fi1(1− vη)⊗ · · · ⊗ fik(1− vη)]bk pr .

Cancelling the summands without v we reduce the equation to the valid identity∑
i1+i2=n

(
fi1v ⊗ fi2 pr−fi1 pr⊗fi2v

)
= −

∑
i1+i2=n

[
(fi1vη ⊗ fi2)b2 pr+(fi1 ⊗ fi2vη)b2 pr

]
.

Another equation to prove, b̌Av + b
A
f̌v + ∆(f̌v ⊗ f̌v) = f b̌Bv : A[1]T> → k, is written

explicitly as

bnv + bn(1− vη)f1v +
∑

i1+i2=n

fi1v ⊗ fi2v =

=
∑

i1+···+ik=n

[fi1(1− vη)⊗ · · · ⊗ fik(1− vη)]bkv : A[1]⊗n → k.

Cancelling the first and the third summands as well as summands that contain v only at
the end, we obtain the valid equation∑

i1+i2=n

fi1v ⊗ fi2v = −
∑

i1+i2=n

[
(fi1vη ⊗ fi2)b2v + (fi1 ⊗ fi2vη)b2v + (fi1v ⊗ fi2v)ηv

]
.

The identity morphism f = (id, 0) is mapped to the identity morphism Bar f = (id, 0).
Let us verify that Bar agrees with the composition. If h = fg in UCCAlg, h1 = f1g1,
h0 = g0 + f0g1, then h = fg. In fact, the equation∑

i1+···+ik=n

(f i1 ⊗ f i2 ⊗ · · · ⊗ f ik)gk = hn

has the only non-vanishing realization f 1g1 = h1. Furthermore, Bar0 f + (Bar1 f) · Bar0 g =
Bar0 h since f̌v + fǧv = ȟv : A[1]T> → k. In fact, in arity n the left hand side is

fnv + fn(1− vη)g1v + δn,0g0v = (fng1 + δn,0g0)v = hnv.
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The functor Bar: UCCAlg→ CACoalg (the bar-construction) is described.

2.2. Cobar-construction. Let us construct a functor Cobar : CACoalg → UCCAlg, the
cobar-construction. Let C = (C, (ξn)n>0, ε,w) be a strict-counit-complemented curved
A∞-coalgebra. The shift C[−1] of the k-submodule C = Ker ε ⊂ C is the image of an idem-
potent 1− ε ·w : C[−1]→ C[−1], which we write as the projection pr = 1− ε ·w : C[−1]→
C[−1]. Define CobarC as C[−1]T> equipped with the multiplication mCobarC

2 in the tensor
algebra, the unit ηCobarC = in0 : k = C[−1]T 0 ↪→ C[−1]T>, the splitting vCobarC = pr0 :
C[−1]T> → C[−1]T 0 = k, the degree 1 derivation mCobarC

1 = ξ : C[−1]T> → C[−1]T>

given by its components ξn =
(
C[−1] ⊂ → C[−1]

ξn→ C[−1]⊗n
pr⊗n

→ C[−1]⊗n
)
, n > 0, and

a degree 2 element
mCobarC

0 = −w ⊗w −
∑
n>0

wξn ∈ C[−1]T̂>.

For general curved A∞-coalgebra C the element mCobarC
0 does not belong to C[−1]T>,

however, if C is a curved augmented coalgebra, then it does. Conilpotency of C is not
needed for existence of CobarC. Let us verify necessary identities.

If n 6= 2, then ξn = ξn
∣∣
C[−1]

. Furthermore, ξ2 = ξ2

∣∣
C[−1]

· [(1 − εw) ⊗ (1 − εw)] =

ξ2

∣∣
C[−1]

+ 1⊗w −w ⊗ 1. Extension of this map satisfies

ξ2 = ξ2[(1− εw)⊗ (1− εw)] = ξ2 + 1⊗w −w ⊗ 1− ε(w ⊗w) : C[−1]→ C[−1]⊗2. (10)

Both sides of the equation (mCobarC
1 )2 = (mCobarC

0 ⊗1−1⊗mCobarC
0 )mCobarC

2 are derivations.
It is equivalent to its restriction to generators C[−1].∑
r+k+t=n

ξr+1+t(1
⊗r⊗ξk⊗1⊗t) = (mCobarC

0 )n−1⊗1−1⊗(mCobarC
0 )n−1 : C[−1]→ C[−1]⊗n. (11)

Let us prove (11) for (mCobarC
0 )2 = −w ⊗w −wξ2 = 0, (mCobarC

0 )n−1 = −wξn−1 if n 6= 3.
In fact, (11) is obvious for n = 0. It says for n = 1 that

ξ2
1 + ξ2(1⊗ ξ0 + ξ0⊗ 1) = (1⊗w−w⊗ 1)(1⊗ ξ0 + ξ0⊗ 1) = (wξ0)− ξ0w+ ξ0w− (wξ0) = 0

as it has to be. If n = 2 or n > 4, then the left hand side of (11) is

ξ1ξn + ξ2(ξn−1 ⊗ 1 + 1⊗ ξn−1) + · · ·+ ξn−1

∑
r+2+t=n

1⊗r ⊗ ξ2 ⊗ 1⊗t + · · · =

= (1⊗w −w ⊗ 1)(ξn−1 ⊗ 1 + 1⊗ ξn−1)+

+ξn−1

∑
r+2+t=n

(1⊗(r+1) ⊗w ⊗ 1⊗t − 1⊗r ⊗w ⊗ 1⊗(1+t)) = −ξn−1 ⊗w + 1⊗wξn−1−

−wξn−1 ⊗ 1−w ⊗ ξn−1 + ξn−1(1⊗(n−1) ⊗w −w ⊗ 1⊗(n−1)) = 1⊗wξn−1 −wξn−1 ⊗ 1,

as claimed. If n = 3, then the left hand side of (11) is

ξ1ξ3+ ξ2(ξ2 ⊗ 1+ 1⊗ ξ2)+ · · · = (ξ2+ 1⊗w−w ⊗ 1)[(ξ2−w ⊗ 1)⊗ 1+ 1⊗ (ξ2+ 1⊗w)]−
−ξ2(ξ2 ⊗ 1 + 1⊗ ξ2) = 1⊗ (wξ2 + w ⊗w)− (wξ2 + w ⊗w)⊗ 1 = 0,

as claimed.
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The expressionmCobarC
0 mCobarC

1 is a well-defined element of C[−1]T̂>. Its n-th component
is

mCobarC
0 mCobarC

1 prn = −w ⊗wξn−1 + wξn−1 ⊗w −
∑

r+k+t=n

wξr+1+t(1
⊗r ⊗ ξk ⊗ 1⊗t) =

= −w ⊗wξn−1 + wξn−1 ⊗w −wξn−1

∑
r+2+t=n

(1⊗(r+1) ⊗w ⊗ 1⊗t − 1⊗r ⊗w ⊗ 1⊗(1+t)) =

= −w ⊗wξn−1 + wξn−1 ⊗w −wξn−1(1⊗(n−1) ⊗w −w ⊗ 1⊗(n−1)). (12)

If n 6= 3, then ξn−1 = ξn−1 and the obtained expression is equivalent to

−w ⊗wξn−1 + wξn−1 ⊗w −wξn−1 ⊗w + w ⊗wξn−1 = 0.

If n = 3, then (12) is equivalent to

−w ⊗ [w(1⊗w −w ⊗ 1)] + [w(1⊗w −w ⊗ 1)]⊗w = w ⊗w ⊗w(−1− 1 + 1 + 1) = 0.

Thus mCobarC
0 mCobarC

1 = 0. We obtain a map Ob CACoalg→ Ob UCCAlg.
Let us describe the functor Cobar : CACoalg→ UCCAlg on morphisms. It takes a mor-

phism g = (g1, g0) : C → D to the morphism Cobar g = f = (f1, f0) : C[−1]T> → D[−1]T>,
where the algebra homomorphism Cobar1 g = f1 = g is specified by its components

g1 = g1 =
(
C[−1] ⊂ → C[−1]

g1→ D[−1]
pr→ D[−1]

)
,

g0 = g′0 =
(
C[−1] ⊂ → C[−1]

g0→ k
)
, (13)

and the degree 1 element is Cobar0 g = f0 =
(
k w→ C[−1]

ǧ→ D[−1]T>
prT>

→ D[−1]T>
)
,

which we write as wǧ extending the notation. This element has the only non-vanishing
component f00 =

(
k w→ C[−1]

g0→ k
)

= wg0. In fact,

f01 =
(
k w→ C[−1]

g1→ D[−1]
pr→ D[−1]

)
= wg1 pr = 0.

Thus,

Cobar0 g = f0 =
(
k w→ C[−1]

g0→ k ⊂in0→ D[−1]T>
)
,

Cobar g = f =
(
k w→ C

g0→ k
)

= g. (14)

Let us check that f is indeed a morphism of UCCAlg. It is required that gξ+(g⊗ f0− f0⊗
g)m2 = ξg. The second term vanishes, but this form of equation is easier to deal with. All
terms of this equation are g-derivations. Hence, the equation is equivalent to its restriction
to C[−1]: ǧξ + (ǧ⊗ f0− f0⊗ ǧ)m2 = ξ̌g : C[−1]→ D[−1]T>, which means that for all n > 0

g1ξn + (gn ⊗wg0 + gn−1 ⊗wg1 pr−wg0 ⊗ gn −wg1 pr⊗gn−1)m2 =

=
∑

i1+···+ik=n

ξk(gi1 ⊗ gi2 ⊗ · · · ⊗ gik) : C[−1]→ D[−1]⊗n.
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When written explicitly,

g1(1− εw)ξn pr⊗n +(gn pr⊗n⊗wg0 + gn−1 pr⊗(n−1)⊗wg1 pr−

−wg0 ⊗ gn pr⊗n−wg1 pr⊗gn−1 pr⊗(n−1))m2 =
∑

i1+···+ik=n

ξk(gi1 ⊗ · · · ⊗ gik) pr⊗n +

+
∑

i1+i2=n

(
gi1 ⊗wgi2 −wgi1 ⊗ gi2

)
pr⊗n : C[−1]→ D[−1]⊗n,

it becomes obvious.
Another equation must hold,

−w ⊗w −wξ̌ −wǧξ − (wǧ ⊗wǧ)m2 = −wǧ ⊗wǧ −
∑
k>0

wξkǧ
⊗k

: k→ D[−1]T>.

After cancelling two summands and changing the sign the equation is written as

δn,2w ⊗w + wξn + wg1ξn =
∑

i1+···+ik=n

wξk(gi1 ⊗ gi2 ⊗ · · · ⊗ gik) : k→ D[−1]⊗n.

Explicitly:

δn,2w ⊗w + wξn + wg1(1− εw)ξn =
∑

i1+···+ik=n

wξk(gi1 ⊗ gi2 ⊗ · · · ⊗ gik) pr⊗n .

Cancelling wg1ξn against the right hand side we come to the valid equation δn,2w ⊗ w +
wξn −wξn = 0: k → D[−1]⊗n. In fact, ξn = ξn for n 6= 2 and the equation is obvious. For
n = 2 we have by (10) w ⊗w + wξ2 −wξ2 −w(1⊗w) + w(w ⊗ 1) + wε(w ⊗w) = 0.

The identity morphism g = (id, 0) is mapped to the identity morphism Cobar g = (id, 0).
Let us verify that Cobar agrees with the composition. If h =

(
C

f−→ D
g−→ E

)
in CACoalg,

h1 = f1g1, h0 = f0 + f1g0, then (Cobar1 f) · Cobar1 g = fg = h = Cobar1 h. In fact, the
equation ∑

i1+···+ik=n

fk(gi1 ⊗ gi2 ⊗ · · · ⊗ gik) = hn : C[−1]→ E[−1]⊗n

for n = 1 holds due to f 1g1 = f1(1− εw)g1 pr = f1g1 pr = h1 pr = h1 : C[−1]→ E[−1], and
for n = 0 it holds due to f 0 + f 1g0 = f0 + f1(1− εw)g0 = f0 + f1g0 = h0 = h0 : C[−1]→ k.

Furthermore, Cobar0 g + (Cobar0 f) · Cobar1 g = Cobar0 h since wǧ + wf̌ g = wȟ : k →
E[−1]T>. In fact, the n-th component of the left hand side is

wgn +
∑

i1+···+ik=n

wfk(gi1 ⊗ gi2 ⊗ · · · ⊗ gik) : k→ E[−1]⊗n,

which for n = 1 transforms to wg1 +wf 1g1 = wg1 +wf1(1−εw)g1 = wf1g1 pr = wh1 : k→
E[−1], and for n = 0 equals

wg0 + wf 0 + wf 1g0 = wg0 + wf 0 + wf1(1− εw)g0 = w(f0 + f1g0) pr = wh0.

The functor Cobar : CACoalg→ UCCAlg (the cobar-construction) is described.

3. Adjunction. We are showing that the two (bar and cobar) constructions are functors,
adjoint to each other. The adjunction bijection will be the top row of the following diagram.
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The two middle rows are natural transformations defined so that the two lower squares
commute.

UCCAlg(C[−1]T>, A) → CACoalg(C,A[1]T>)

gr -alg(C[−1]T>, A)× gr(k[−1], k)

↓
∩

∼
→ gr - nuCoalg(C,A[1]T>)× gr(C, k[1])

↓
∩

gr(C[−1], A)× gr(k[−1],k)

o↓

∼
→ gr(C,A[1])× gr(C, k[1])

o _·pr1× id↓

gr(C[−1], A)× gr(C[−1],k)× gr(k[−1],k)

wwww
[1]

∼
→ gr(C,A[1])× gr(C,k[1])× gr(k,k[1])

wwww
Notice that the set of morphisms of augmented graded coalgebras C → A[1]T> is in bijection
with the set of morphisms of graded non-counital coalgebras gr - nuCoalg(C,A[1]T>). The
functor X 7→ XT> = ⊕n>0X

⊗n has the structure of a comonad and T>-coalgebras are
precisely conilpotent non-counital coalgebras ([1, Section 6.7]). Since C is conilpotent, the
arrow _ · pr1⊕ id is a bijection by the well known lemma on Kleisli categories (generalized
to multicategories in [1, Lemma 5.3]). Thus the second horizontal map is a bijection as well.
Morphisms f : C[−1]T> → A ∈ UCCAlg and g : C → A[1]T> ∈ CACoalg are related as the
following diagram shows. It consists of elements (morphisms of degree 0) of vertices of the
previous diagram. For instance, g1

1 = ǧ1 = (̌f1 pr)[1] = f 1
1 [1], etc. Equivalently,

σ−1f̌1 pr = ǧ1σ
−1 : C → A, (15a)

σ−1f̌1v = g0|C : C → k, (15b)
f = wg0 : k→ k, (15c)

where all components are listed in

f → g

(f1, σf)

↓
→ (g1, g0σ)

↓

(̌f1, σf)

↓
→ (ǧ1, g0σ)

↓

(̌f1 pr, f̌1v, σf)

↓
[1]→ (ǧ1, g0|Cσ,wg0σ)

↓

(16)

We are going to show that systems of equations on pairs (f1, σf) and (g1, g0σ) saying that
these pairs are morphisms of UCCAlg and CACoalg are equivalent. In fact, these systems
are

f̌1m
A
1 = m̌CobarC

1 f1 : C[−1]→ A, mA
0 = mCobarC

0 f1 : k→ A, (17)

δC1 ǧ1 +δC2 (g0⊗1−1⊗g0)ǧ1 = g1δ̌
BarA
1 : C → A[1], δC0 −δC1 g0−δC2 (g0⊗g0) = g1δ

BarA
0 : C → k.

(18)
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Note that the image of any coderivation C → C is contained in C = Ker ε. In more detailed
equations (17) and (18) read

f̌1m
A
1 = ξ0η + ξ1f̌1 + ξ2(̌f1 ⊗ f̌1)mA

2 : C[−1]→ A, mA
0 = −wξ0η

A −wξ1f̌1 : k→ A, (19)

δC1 ǧ1 + δC2 (g0 ⊗ 1− 1⊗ g0)ǧ1 = εCbA0 prA + prC ǧ1b
A
1 prA + prC δ

C

2 (ǧ1 ⊗ ǧ1)bA2 prA : C → A[1],

δC0 − δC1 g0 − δC2 (g0 ⊗ g0) = −εCbA0 v − prC ǧ1b
A
1 v − prC δ

C

2 (ǧ1 ⊗ ǧ1)bA2 v : C → k. (20)

Let us rewrite systems (19) and (20) splitting each equation in two accordingly to splitting
the target A or the source C in two summands

f̌1m
A
1 prA = ξ1f̌1 prA +ξ2(̌f1 ⊗ f̌1)mA

2 prA : C[−1]→ A, (21a)

f̌1m
A
1 v = ξ0 + ξ1f̌1v + ξ2(̌f1 ⊗ f̌1)mA

2 v : C[−1]→ k, (21b)

mA
0 prA = −wξ1f̌1 prA : k→ A, (21c)

mA
0 v = −wξ0 −wξ1f̌1v : k→ k, (21d)

δC1 ǧ1 + δC2 (g0 ⊗ 1− 1⊗ g0)ǧ1 = ǧ1b
A
1 prA +δ

C

2 (ǧ1 ⊗ ǧ1)bA2 prA : C → A[1], (22a)

δC0 − δC1 g0 − δ
C

2 (g0 ⊗ g0) = −ǧ1b
A
1 v − δ

C

2 (ǧ1 ⊗ ǧ1)bA2 v : C → k, (22b)

wδC1 ǧ1 = bA0 prA : k→ A[1], (22c)
wδC0 − wδC1 g0 = −bA0 v : k→ k. (22d)

We claim that equations (21x) and (22x) are equivalent for x∈ {a,b,c,d}. In fact, let us
rewrite the equations once again in the same order replacing m and δ with their definitions
and composing with σ−1 wherever appropriate:

σ−1f̌1σb
A
1 σ
−1 prA +σ−1ξ1f̌1 prA +σ−1ξ2(̌f1σ ⊗ f̌1σ)bA2 σ

−1 prA = 0: C → A, (23a)

σ−1f̌1σb
A
1 σ
−1v + σ−1ξ0 + σ−1ξ1f̌1v + σ−1ξ2(̌f1σ ⊗ f̌1σ)bA2 σ

−1v = 0: C → k, (23b)

bA0 σ
−1 prA +wξ1f̌1 prA = 0: k→ A, (23c)

bA0 σ
−1v + wξ0 + wξ1f̌1v = 0: k→ k. (23d)

In transforming (22a) use that δC2 (g0⊗1−1⊗g0) = δC2 (prC ⊗ prC)(g0⊗1−1⊗g0) : C → C
actually takes values in C, see (7). The second system is

σ−1ξC1 σǧ1σ
−1 + σ−1ξ

C

2 (σg0 ⊗ σ + σ ⊗ σg0)ǧ1σ
−1+

+ǧ1b
A
1 prA σ

−1 + σ−1ξ
C

2 (σǧ1 ⊗ σǧ1)bA2 prA σ
−1 = 0: C → A, (24a)

σ−1ξC0 + σ−1ξC1 σg0 + σ−1ξ
C

2 (σg0 ⊗ σg0) + ǧ1b
A
1 v+

+σ−1ξ
C

2 (σǧ1 ⊗ σǧ1)bA2 v = 0: C → k, (24b)

wσ−1ξC1 σǧ1σ
−1 + bA0 prA σ

−1 = 0: k→ A, (24c)
wσ−1ξC0 + wσ−1ξC1 σg0 + bA0 v = 0: k→ k. (24d)

According to our system of notation σ pr = prσ. We shall use that f̌1 = f̌1 prA +f̌1vη.
Substituting relations (15a) and (15b) into the above equations we find that the latter are
pairwise equivalent.
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In fact, (23c) is equivalent to (24c) and (23d) is equivalent to (24d). Equivalence of (23a)
and (24a) follows from the identity

σ−1ξ2(̌f1vη ⊗ f̌1 prA +f̌1 prA⊗f̌1vη)mA
2 prA = σ−1ξ2(σg0|C ⊗ σ + σ ⊗ σg0|C)ǧ1σ

−1.

Equivalence of (23b) and (24b) follows from the identity

σ−1ξ
C

2 [(̌f1 prA +f̌1vη)⊗ (̌f1 prA +f̌1vη)]mA
2 v =

= σ−1ξ
C

2 (σg0 ⊗ σg0) + σ−1ξ
C

2 (σǧ1 ⊗ σǧ1)bA2 σ
−1v : C → k,

which can be expanded to

σ−1ξ
C

2 (̌f1 prA⊗f̌1vη + f̌1vη ⊗ f̌1 prA +f̌1vη ⊗ f̌1vη)]mA
2 v = σ−1ξ

C

2 (σg0|C ⊗ σg0|C) : C → k.

The latter equation follows from the obvious one σ−1ξ
C

2 (̌f1v⊗ f̌1v) = σ−1ξ
C

2 (σg0|C ⊗ σg0|C) :
C → k. Hence, the bijection

UCCAlg(C[−1]T>, A)
∼−→ CACoalg(C,A[1]T>) (25)

is constructed.

Theorem 1. The functors Cobar : CACoalg� UCCAlg : Bar are adjoint to each other.

Proof. We have to prove naturality of bijection (25) with respect to A and C. The bijection
takes

(f1, f) 7→ (̌f1 prA, f̌1vA, σf)
[1]→ (σ−1f̌1 prA σ, σ

−1f̌1vAσ, fσ) = (ǧ1, g0|Cσ,wg0σ) 7→ (g1, g0σ),
(26)

where g0 = (g0|C ,wg0) = (σ−1f̌1vA, f) : C = C ⊕ k → k, g1 = ∆
(k)

C · ǧ⊗k1 = ∆
(k)

C ·
(σ−1f̌1 prA σ)⊗k : C → A[1]⊗k, k > 0.

Naturality of (25) with respect to A means that for each h : A→ B ∈ UCCAlg

UCCAlg(C[−1]T>, A)
∼→ CACoalg(C,A[1]T>)

=

UCCAlg(C[−1]T>, B)

UCCAlg(1,h)↓
∼→ CACoalg(C,B[1]T>)

CACoalg(C,Bar h)↓ (27)

The left-bottom path takes (f1, f) to

(f1h1, f + h) 7→ (̌f1h1 prB, f̌1h1vB, σ(f + h))
[1]→ (σ−1f̌1h1 prB σ, σ

−1f̌1h1vBσ, (f + h)σ) 7→ (q1, q0σ),

where

q1 = ∆
(k)

C · (σ−1f̌1h1 prB σ)⊗k : C → B[1]⊗k, q0 = (σ−1f̌1h1vB, f + h) : C = C ⊕ k→ k.

The top bijection takes (f1, f) to (26) and the right morphism takes it to
(
g1 · Bar1 h, (g0 +

(εC ⊕ g1) Bar0 h)σ
)
. We have

g1 · Bar1 h = ∆
(k)

C · ǧ⊗k1 · h
⊗k
1 = ∆

(k)

C (σ−1f̌1 prA σh1)⊗k = ∆
(k)

C (σ−1f̌1(1− vη)h1σ prB)⊗k =

= ∆
(k)

C (σ−1f̌1h1 prB σ)⊗k = q1 : C → B[1]⊗k,

g0 + g1 Bar0 h = σ−1f̌1vA + σ−1f̌1 prA σh1vB = σ−1f̌1h1vB = q0 : C → k
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due to obvious identity vA + prA h1vB = h1vB : A→ k. Furthermore,

wg0 + (w, 0)(εC ⊕ g1) Bar0 h = f + h0vB = f + h = wq0 : k→ k

due to computation h0vB = h0vB = hηBvB = h. Therefore, equation (27) is proven.
Naturality of (25) with respect to C means that for each j : C → D ∈ CACoalg

UCCAlg(D[−1]T>, A)
∼→ CACoalg(D,A[1]T>)

=

UCCAlg(C[−1]T>, A)

UCCAlg(Cobar j,A)↓
∼→ CACoalg(C,A[1]T>)

CACoalg(j,1)↓ (28)

The left-bottom path takes (f1, f) to

((Cobar1 j) · f1,Cobar j + f) 7→ (j1f̌1 prA, j0 + j1f̌1vA, σ(Cobar j + f))
[1]→ (σ−1j1f̌1 prA σ, σ

−1(j0 + j1f̌1vA)σ, (Cobar j + f)σ) 7→ (r1, r0σ),

which takes into an account that ((Cobar1 j)·f1)∨ = j0ηA+j1f̌1 : C[−1]→ A. The top bijection
takes (f1, f) to (g1, g0σ) from (26) and the right morphism takes it to (j1g1, (j0 + j1g0)σ). This
coincides with (r1, r0σ). In fact,

j1g1 = j1∆
(k)

D (σ−1f̌1 prA σ)⊗k = ∆
(k)

C (σ−1j1f̌1 prA σ)⊗k = r1 : C → A[1]⊗k,

j0 + j1g0 = σ−1j0 + j1σ
−1f̌1vA = σ−1(j0 + j1f̌1vA) = r0 : C → k,

wC j0 + wC j1g0 = wC j0 + wDg0 = Cobar j + f = wr0 : k→ k.

Therefore equation (28) holds and the theorem is proven.

Notice that both sides of (15c) do not appear in the equations at all. One may assume
that the components of morphisms of curved algebras and coalgebras belonging to k1 are
all 0. Then one gets subcategories uccAlg ⊂ UCCAlg and caCoalg ⊂ CACoalg with smaller
sets of morphisms.

Definition 13. Objects of the category uccAlg are unit-complemented curved algebras and
morphisms are graded algebra homomorphisms f : A→ B such that fmB

1 = mA
1 f, m

B
0 = mA

0 f.
The composition and the identity morphisms are inherited from gr -alg.

Definition 14. Objects of the category caCoalg are curved augmented coalgebras and
morphisms g : C → D are pairs (g1, g

′
0) consisting of a homomorphism of augmented graded

coalgebras g1 : C → D and a k-linear map g′0 : C → k of degree 1 such that

δC1 g1 + prC δ
C

2 (g′0 ⊗ g1 − g1 ⊗ g′0) = g1δ
D
1 : C → D,

δC0 − δC1 g′0 − prC δ
C

2 (g′0 ⊗ g′0) = g1δ
D
0 : C → k.

The composition h : C → E of morphisms f : C → D and g : D → E is given by h1 = f1g1,
h′0 = f ′0 + f1g

′
0. The unit morphism is (id, 0).
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Notice that there is a functor Bar: uccAlg→ caCoalg, making the diagram of functors

uccAlg
Bar→ caCoalg

=

UCCAlg
↓

Bar→ CACoalg
↓

commute on the nose. In view of (8) Bar takes a morphism f : A → B ∈ uccAlg to the
strict coalgebra morphism Bar1 f = f 1T

> : A[1]T> → B[1]T>, and the degree 1 functional
is Bar′0 f =

(
A[1]T>

pr1→ A[1] ⊂ → A[1]
f→ B[1]

v→ k
)
. The restriction of (9) to k

vanishes.
Also there is a functor Cobar : caCoalg → uccAlg, making commutative the diagram of

functors

caCoalg
Cobar→ uccAlg

=

CACoalg
↓

Cobar→ UCCAlg
↓

It takes a morphism g = (g1, g
′
0) : C → D ∈ caCoalg to the algebra homomorphism

Cobar g : C[−1]T> → D[−1]T>, specified by its components g1 = g1| : C[−1] → D[−1],
g′0 : C[−1] → k, which coincides with (13). If g = 0, then Cobar g given by (14) vanishes as
well. Since equations (17), (18) distinguishing morphisms in diagram (16) do not involve f ,
g, we have the following consequence.

Corollary 1 (to Theorem 1). The functors Cobar : caCoalg � uccAlg : Bar are adjoint to
each other.

Now let us describe the full subcategories of the above categories.

Definition 15. A unit-complemented dg-algebra is a unit-complemented curved algebra
(A,m2,m1, 0, η, v) withm0 = 0. Equivalently, it is a dg-algebra (A,m2,m1, η) with a degree 0
map v : A → k (splitting of the unit) such that η · v = 1k. Morphisms of such algebras are
morphisms of dg-algebras. Their full subcategory is denoted ucdgAlg ⊂ uccAlg.

Definition 16. Augmented curved coalgebras are defined as curved augmented coalgebras
(C, δ2, δ1, δ0, ε,w) with

wδ1 = 0, wδ0 = 0. (29)
The full subcategory of such coalgebras is denoted acCoalg ⊂ caCoalg.

L. Positselski ([5]) formulates equations (29) as (w, 0) : k → C being a morphism in
caCoalg. Clearly, Cobar(Ob acCoalg) ⊂ Ob ucdgAlg.

Proposition 1. The functor Bar restricts to a functor Bar: ucdgAlg → acCoalg, which
has a left adjoint. The adjunction is Cobar : acCoalg� ucdgAlg : Bar.

Proof. We have to prove that Bar(Ob ucdgAlg) ⊂ Ob acCoalg. This follows from two re-
marks. First, wBarAδBarA

1 =
(
k ⊂in0→ A[1]T>

b→ A[1]T>
)

= 0 since

b =
k>0∑

a+k+c=n

(
1⊗a ⊗ bk ⊗ 1⊗c : A[1]⊗n → A[1]⊗(a+1+c)

)
.

Second, wBarAδBarA
0 = −

(
k ⊂in0→ A[1]T>

b̌→ A[1]
v→ k

)
= 0 since b0 = 0.
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4.1. Twisting cochains. Let us consider a unit-complemented curved algebra A and
a curved augmented coalgebra C. A morphism f ∈ uccAlg(C[−1]T>, A) is identified
with a degree 0 map f̌1 : C[−1]→ A which satisfies equations (19). Equivalently, the degree 1
map θ : C → A satisfies the equations

wθ = 0: k→ A, (30a)
θmA

1 + δ1θ = δ0η
A + εCmA

0 − δ2(θ ⊗ θ)mA
2 : C → A. (30b)

In fact, each solution of (30a) has the form θ =
〈
C

prC→ C
σ−1

→ C[−1]
f̌1→ A

〉
for

a unique f̌1. Restricting (30b) to C gives the top equation from (19), while restricting to the
image of w : k→ C gives the bottom equation from (19).

Definition 17. The degree 1 map θ : C → A that satisfies (30) is called a twisting cochain.

The set Tw(C,A) = {twisting cochains θ : C → A} is in bijection with the homomorphi-
sm sets

uccAlg(C[−1]T>, A)
∼→ Tw(C,A)

∼→ caCoalg(C,A[1]T>),

f̌1 → prC σ
−1f̌1 = θ → (θ

∣∣
C
σ, θ
∣∣
C
v) = (ǧ1, ǧ

′
0).

When A is a unit-complemented dg-algebra and C is an augmented curved coalgebra
the notion of a twisting cochain simplifies to a degree 1 map θ : C → A which satisfies the
equation θmA

1 + δ1θ = δ0η
A − δ2(prC ⊗ prC)(θ ⊗ θ)mA

2 : C → A.

4.2. Conclusion. The results of the paper indicate that a dual notion to differential graded
algebra is the augmented curved coalgebra, and not a differential graded coalgebra as one
might think a priori.
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