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BAR AND COBAR CONSTRUCTIONS FOR CURVED ALGEBRAS AND
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We provide bar and cobar constructions as functors between some categories of curved
algebras and curved augmented coalgebras over a graded commutative ring. These functors are
adjoint to each other.
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Mpbr paccmaTpuBaeM 6ap u Kobap KOHCTPYKIINUA KaK (PYHKTOPHI MEXKJy HEKOTOPBIMHU KaTe-
TOpUSIMYU KPUBBIX aJireOp M KPUBBIX YBEJMYEHHBIX KOAJIreOp Hall IPaJyuPOBAHHBIM KOMMYTa-
TUBHBIM KOJIBIIOM. DTHU (DYHKTOPBI COMPSI?KEHBI JAPYT C IPYTOM.

In this paper we recall some notions and reproduce some results from Positselski
[5, 6] in a modified form. Our exposition differs in two aspects: firstly, we work over a graded
commutative ring k instead of a field or a topological local ring, secondly, we modify the
definitions of categories of curved algebras and curved coalgebras.

The advantage of using graded commutative rings over usual commutative rings is that it
allows to place (co)derivations of certain degree on equal footing with (co)algebra homomor-
phisms. Take note of the last condition in the following definition.

Definition 1. A graded strongly commutative ring is a graded ring k such that ba =
(—1)lalPlgph for all homogeneous elements a, b and ¢ = 0 for all elements ¢ of an odd
degree.

The first condition implies only that 2c? = 0 for elements ¢ of an odd degree.

We give explicit formulae and detailed proofs. Motivations come from A..-algebras and
Ao-coalgebras.

For any graded k-module M and an integer a denote by Ma] the same module with the
grading shifted by a: Mla]* = M%*. Denote by 0*: M — Mla], M* > 2 — x € M[a]*~
the “identity map” of degree dego® = —a. Write elements of M[a] as mo®. Typically, a map
is written on the right of its argument. The composition of X 5 v % 7 is denoted by
f-g: X — Z or simply by fg. If f: V — X is a homogeneous map of certain degree, the
map fla]: V]a] — X|a] is defined as fla] = (—1)*4&/o72fo? = (—1)* 6% fo*. The tensor
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product of homogeneous maps f, g between graded k-modules is defined at elements x, y of
a certain degree as

(z@y).(f®g) = (=1 V< g f@y.yg.

Thus, the Koszul sign rule holds and we deal in the closed symmetric monoidal category gr
of graded k-modules with the symmetry z @ y — (—1)d8=deeyy @ g,

1. Curved (co)algebras. We define curved algebras and curved coalgebras as well as their
morphisms are suitable for our purposes.

1.1. Curved algebras. We begin with curved algebras of various kinds.

Definition 2. A strict-unit-complemented curved Ay -algebra (A, (by)n>0,M,V) consists of
a graded k-module A, degree 1 maps b,,: A[1]®" — A[1] (operations) for n > 0, a degree —1
map 7: k — A[l] (strict unit) and a degree 1 map v: A[1] — k (splitting of the unit) such
that

> (1 @b @ 1) b1y = 0: AP — A[l], Vn >0, (1)
r+k+t=n

(1®m)by = 1lap), (M® 1)by = —1ap, (1°°2n @ 1%)ei11.=0 if a+c#1, n-v =1

For any graded k-module X the tensor k-module XT7 = @,,50X®" is equipped with the
cut coproduct

n
(xlgjn)Azg xl...xk®xk+1...xn'
k=0

The collection b = (by,)ns0: A[1]T> — A[1] amounts to a degree 1 coderivation b: A[1]T> —
A[1]T7 of the counital coassociative coalgebra A[1]T>,

b= > 17 @b 1% A" — A[1]T>.
r+k+t=n

Equation (1) is equivalent to b* = 0.
Getting rid of the shift [1] we rewrite the above operations as in [3, (0.7)]

mn:<—1)n0'®n.bn-0'71: A®n_>A7 degngZ—n’ 7’1/207

n:(kinél[l]o—_lhél), degn=0, v= (4 7 AL k), degv=0.

v

In these terms Definition 2 becomes the following one.

Definition 3. A strict-unit-complemented curved A -algebra (A, (my)n=0, 7, V) consists of a
graded k-module A, maps m,,: A®™ — A of degree 2 — n (operations) for n > 0, a degree 0
map 7: k — A (strict unit) and a degree 0 map v: A — k (splitting of the unit) such that

> (=PI @my, @1%9) My = 0: AP = A, V>0, (2)
Jj+p+g=n
(1 ® 77)m2 = 1a, (77 ® 1)m2 =14, (1®a XN 1®C)ma+1+c =0 if a+ec 7é L n-v= L.

Restricting the above notion we give the following definition.

Definition 4. A wunit-complemented curved algebra (A, mg,my, mg,m,v) is a strict-unit-
complemented curved A-algebra A with the strict unit n and with m,, = 0 for n > 2.
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For such an algebra A equations (2) reduce to the system

(1®@ma)my = (Mme @ 1)ma, mamy = (1 @ my +my @ 1)my, m] = (me®@ 1 — 1 ® mg)ma,

momi; =0, (1@n)me=1, (@ 1)my =1, nmy =0, nv = 1,

which tells that A is a unital associative graded algebra (A, mso,n) of degree 1 derivation my,
whose square is an inner derivation, that is, a commutator with an element mg (curvature)
of degree 2 and mgm; = 0. A direct complement A = Kerv to the k-submodule 7: k < A
is chosen.

The following example of a unit-complemented curved algebra was considered by Posi-
tselski in [5, Section 0.6], see also [4].

Example 1. Let M be a smooth manifold, let £ — M be a smooth vector bundle, k = R.
Denote QF(E) = I'(E @ AFT*M), k € N. Let V: Q°(E) — Q!(E) be a connection on E
which is viewed as a covariant exterior derivative V: Q¥(E) — QF1(E) such that

VreQ(E) YVweQ'(M) (tw)V=(-1)“V) w+r71-(wd).

The category of vector bundles on M is Cartesian closed. The evaluation map ev: E X
End £ — FE leads to the action Q*(E) ® Q"(End E) — Q¥™(E). Moreover, elements h €
A" = Q"(End E) can be identified with Q*(M)-linear maps h: Q¥(E) — QF(E), thus,
(Tw)h = (—1)"/(7h)w. For instance, the curvature 2-form —mg = V? is a Q°*(M)-linear
map, hence an element of Q?(End E).

The graded algebra A* = Q*(End E) equipped with the derivation (h)ds = h -V —
(—=1)"V - h (which is a covariant exterior derivative on the vector bundle End F) and with
the curvature element mg € A% is a curved algebra since (h)d% = moh — hmg, (mg)da = 0.
The latter equation is the Bianchi identity.

A morphism between curved A..-algebras A and B should be given by a family of
components f,,: A[1]®*" — B[1], n > 0. The obtained matrix entries

fr= Y £ ®fu®® fis AP Bl

i1+ tig=n

define a map f: A[1]T> — B[1]T>, which in general does not factor through B[1]7>. The
equation fb = bf, which we write as

Y. fu®fo®@fibd= Y (1T b ©1%) fri,

i14+-Fig=n r+k+t=n

also makes sense under some additional assumptions (like extra filtration [2| or topological
structure of k [6]). We shall consider only curved algebras B, which insures that the sum in
the left hand side is finite. Moreover, we assume that components f, vanish for n > 1 and
fo is of the form

f
fo=(k —k — BJ[1]), (3)
where deg f = 1. The latter assumption was made in order to deal with augmented coalgebras

in bar and cobar constructions, which does not exclude that similar results could be obtained
under weaker assumptions.
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Definition 5. A morphism of unit-complemented curved algebras f: A — B is a pair (f, f)

consisting of k-linear maps f;: A[1] — B[1] of degree 0 and f: k — k of degree 1 such that

(i@ f)by =b3fi, AbY =0l fi, b5 =05, mafi=mng (4)
The composition h: A — C of morphisms f: A — Band g: B— Cishy = figi,h=g+[.

Under assumption (3) the expected conditions
fib? + (fo ® f)bg + (fr ® fo)by = b1 fi, b5 + fobt + (fo ® fo)by = by fr. ho = go + foqn

reduce to the given ones. In fact, f € k! implies f* = 0 due to graded commutativity of k,
see Definition 1. B B

The last equation of (4) tells that f; preserves the unit. These equations can be rewritten
for conventional k-linear maps

f= (A—25 A1) 25 B[] 25 B), deghy =0,
fr= (k2 B 25 B) = (k—to k-5 B), degfy=1,
as follows.

Definition 6. A morphism of unit-complemented curved algebras f: A — B is a pair (fy, f)
consisting of k-linear maps f;: A — B of degree 0 and f: k — k of degree 1 such that

(fi® fl)mZB = mffl, flmf = m’f‘fl, m(])a = m()qfl, nAfl =P,

The composition h: A — C of morphisms f: A — Bandg: B— Cish =fig;,h=g+ [
The unit morphism is (id, 0). The category of unit-complemented curved algebras is denoted
UCCAlg.

In particular, f;: A — B is a morphism of unital associative graded algebras.

1.2. Curved coalgebras. Now we define curved coalgebras of various kinds.

Definition 7. A strict-counit-complemented curved A-coalgebra (C, (&,)n>0, €, W) consists
of a graded k-module C, degree 1 maps §,: C[—1] — C[—1]®" (cooperations) for n > 0,
a degree —1 map e: C[—1] — k (strict counit) and a degree 1 map w: k — C[—1] (splitting
of the counit) such that

Y a1 @& ®19) =0: C[-1] > C[-1]°", Yn >0, (5)
r+k+t=n
Ll®e)=—1loryy, &E®L) =1ty &ar14c(1%®e®1%) =0 if a+c#1,
w-e=1;, WwWH=-WRW.

For any graded k-module X its tensor algebra XTZ = @,0X®" is naturally embedded
into its completed tensor algebra X717 = [Loo X 0 XTZ — XTZ. An arbitrary i~deri-
vation £: XT> — XT7 is determined by its restriction to generators £: X — XT~. In
particular, the collection (&, ),>0 amounts to a degree 1 i-derivation &: C[—1]T> — C[—1]T>
and equations (5) can be interpreted as £2 = 0.
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Getting rid of the shift [—1] we rewrite the above via maps

5n: (—1)”0’71 '5n’0’®n: C_>C®n’ degdn:2—n’ n}(),

o1 € w o
6:(C—>C[—1]—>]k), dege =0, w:(k—>C’[—1]—>C), degw = 0.
In these terms Definition 7 becomes the following one.

Definition 8. A strict-counit-complemented curved A -coalgebra (C, (6,)n>0,€, W) consists
of a graded k-module C, maps §,,: C — C®" of degree 2 — n (cooperations) for n > 0,
a degree 0 map ¢: C' — k (strict counit) and a degree 0 map w: k — C (splitting of the
counit) such that

> ()61 @6, @ 19) = 0: € — C®", Yn >0, (6)
r+k+t=n
52(1 X 8) = 10, 52(6 X 1) = 10, 5a+1+c(1®a ReR 1®C) =0 if a +c 7é 1,
w-e =1k, Wi =ww.

Restricting the above notion and adding a conilpotency condition we get the following
definition.

Definition 9. A curved augmented coalgebra (C, 09,61, do, €, VQ is a strict-counit-comple-
mented curved A..-coalgebra C with ,, = 0 for n > 2 such that (C' = Ker ¢, d5) is conilpotent.

For such a coalgebra C' equations (6) reduce to the system

52(1 ®(52> = (52((52 ® 1), 5162 == 52(1 ®61 —1—51 ® 1), 5% = 52(1 ®(50 - (50 ® 1), (5150 = O,
(l®e)=1c, dhe®1)=1¢, 016 =0, w-e =1, Wi =wRw,

which tells that C' is a counital coassociative graded coalgebra (C,ds,¢) of degree 1 coderi-
vation &1, whose square is an inner coderivation determined by a functional dy: C — k
(curvature) of degree 2 and 6,99 = 0. The degree 0 map w: k — C' is a homomorphism of
graded coalgebras, the augmentation of C'. In particular, kw — C'is a direct complement
to C = Kere. The non-counital graded coalgebra C equipped with the comultiplication
Jo=0—1®w—-—w®1l:C — C®C is conilpotent by assumption, that is,

q

U Ker(Z(n) . C =T =

n>1

A morphism of curved A.-coalgebras g: C' — D should be a dg-algebra morphism
g: C[-1]T> — D[-1]T">, or, equivalently, a family of k-linear degree 0 maps g,: C[—1] —
D[—1]®" n > 0, satisfying the equation g§ = £g. However, to give sense to this equation in
the form

Y g1 0601 = Y &g ® 9, ©g,): C-1] » D[-1°",
r+k+t=n 11+ Fip=n

one has to make additional assumptions. We shall assume that C' is a curved coalgebra and
gn vanish for n > 1. Moreover, we assume that g; preserves the splitting w.



120 V. V. LYUBASHENKO

Definition 10. A morphism of curved augmented coalgebras g: C' — D is a pair (g1, go)
consisting of k-linear maps ¢;: C[—1] — D[—1] and go: C[—1] — k of degree 0 such that

& ®ag) =08, §n+& (900 +0n®g%0)=nil,
&+ 90+ (90 g) = &y, gie” =€, wo =wP.
The composition h: C' — E of morphisms f: C' — D and g: D — F is given by hy = fig1,
ho = fo + f19o-

Rewriting this definition in terms of maps

g = (C 75 C[-1] %5 D[-1] %5 D), deggy =0,
go = (C i) Cl-1] LN ]k), deggy =1,
we give the following definition.

Definition 11. A morphism of curved augmented coalgebras g: C' — D is a pair (g1, go)
consisting of k-linear maps g;: C' — D of degree 0 and gy: C' — k of degree 1 such that

520(g1 ®g1) = g163, 5168;1 +520(g0®g1 — g1 ®g) = g0y,

500 - 51Cg0 - 520(g0 & go) = g15(])3a 815D = 507 ch1 = wP.

The composition h: ¢' = E of morphisms f: C' = D and g: D — E is given by h; = f;g;,
hg = fo + f1go. The unit morphism is (id, 0). The category of curved augmented coalgebras
is denoted CACoalg.

In particular, g; is a morphism of augmented graded coalgebras. Actually, gy occurs in
the equations only as its restriction g, = go|z and validity of the equations does not depend

on g =wgg € k'. In fact, with the notation 520 = (6 SNSRI ® C e 6@6),
we have wé§ (g ®@ 1 — 1 ® go) = (wgo)w — w(wgg) = 0, which implies that

_ =C _ =C
05 (go®1—1®gp) = Pre(dy, +1@W+w®R1)(gr®1—1R®g) =PI b, (B ®1—1®g). (7)

Since wé§ (go ® go) = (wgo)? = 0, we find that

_ ~C =
05 (80 ® 80) = Pro(0y + 1@ w+w @ 1)(g ® 80) = DT b, (80 ® o).
Thus Definition 11 can be reformulated as follows.

Definition 12. A morphism of curved augmented coalgebras g: C' — D is a triple (g1, g, 9)
consisting of a homomorphism of augmented graded coalgebras g;: C' — D, a k-linear map
go: C'— k of degree 1 and an element g € k' (of degree 1) such that
__ =C _
0 g1+ D0, (8 @ g1 — g1 ® &) = g6 : C — D,

_ =C
55 —07gh — Pre 0, (8) @ g0) = 8165 : C — k.

The composition h: C' — E of morphisms f: C'" — D and g: D — F is given by h; = fig;,
ho = fo + figy, b = f + g. The unit morphism is (id, 0, 0).
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2. Bar and cobar constructions. We are going to prove the existence of two functors
between categories of curved algebras and curved coalgebras, generalizing the well known
bar and cobar constructions.

2.1. Bar-construction. Let us construct a functor Bar: UCCAlg — CACoalg, the bar-
construction. Let A = (A, (by)n=0,m,V) be a strict-unit-complemented curved A..-algebra.
The shift A[1] of the k-submodule A = Kerv C A is the image of an idempotent 1 — v -
n: A[l] — A[l], which we write as the projection pr = 1 — v - n: A[1l] — A[l]. Define Bar A
as A[1]T? equipped with the cut comultiplication 65% 4, the counit e 4 = pr,: A[1]T> —
A[1)T° = k, the splitting wB*4 = ing: k = A[1]T° — A[1]T>, the degree 1 coderivation
§ParA — . A[1]T> — A[1]T?> given by its components

b = (AP s AP -2 A1) 25 AN]), 00,

WV

b v

and a degree 2 functional 654 = — (A[1]T> —— A[1]T> > Al1] > k). Clearly, w4

is a graded coalgebra homomorphism and the coalgebra A[1]T> = A[1]T> with the cut
comultiplication is conilpotent.
Let us verify the necessary identities. Both sides of the equation

((5{3%14)2 _ 5%3:1&4(1 ® (5(]53:arA - 6(]?&&4 ® 1) Z[l]T> - Z[l]T>

are coderivations. Hence, the equation is equivalent to its composition with pr,: A[1]T> —

A[l]. That is, to

Y (1T @b @ 1) b1y = by v @1 —1®b,_yv: A[1]" — A[l]
r+k+t=n

for all n > 0. This holds true due to computation

> (1 @b(l = vn) @ 19)b,4 14 BT =
r+k+t=n

= —(1 ® bnflV’n)bg ﬁ —<bn,1VT] X 1>b2 ﬁ = bn,1V X 1—-1 X bnflV.

v

Furthermore, 6P A5far4 = — (A[1]T> LN A[1T> k) vanishes due to

Al

3 (AT @bl - vn) © 1% =
r+k+t=n

= (1®by_1vN)bav + (bp1vN @ 1)byv =V @ by v — b1 v v = 0: A[1]®" — k,

because A[1]v = 0. Thus the object Bar A of CACoalg is welldefined.

Let us describe the functor Bar: UCCAlg — CACoalg on morphisms. It takes a mor-
phism f = (f1, fo): A — B to the morphism Bar f = g = (g1,80): A[1]T* — B[1]T7, where
the coalgebra homomorphism Bar; f = g; = f is specified by its components

Fi= (A1) = Al = B =3 BL), f, = (k== B =3 B1)) =0, ()

and the degree 1 functional is

f

Bary f = go = (A[T% — AT —1 B[] 5 k). 9)
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Notice that the coalgebra homomorphism f is strict, that is, it has only one non-vanishing
component, the first one. Thus, f preserves the number of tensor factors, f| = 7?” D A[1]E —
B[1]®", n > 0. In particular, wB 4 f = wBar B,

Let us check that g is indeed a morphism of CACoalg. It is required that EAgl + A(go ®
g — 81 ®g) = glgB. All terms of this equation are f-coderivations. Hence, the equation

—AZ R B __ —
follows from its composition with pr;. bAf +A(go® f— f®go) = fb : A[1]T* — BJ[1], that
is, for all n > 0
bufr+fov@ fu+ ive foy —F® fov—fo @ iv =
= > (fa®f,® @ )b AQ]P" = Bl1].
i1+ Fig=n
In detail,
bn(l - Vn)flﬁ—i_ Z (filv ® f’iz ﬁ_fu ﬁ®flzv) =

i1+ia=n

= Y [ful—v)® - @ fi (1 vi)lb, T

i1+ Fig=n
Cancelling the summands without v we reduce the equation to the valid identity

Z (fv® fi, PT—fi, PTRf;,v) = — Z [(fisvn @ fiy)b2 DT +(fi, ® fi,vN)ba DT

i1+iz=n i1+ig=n

Another equation to prove, b4v + BAfV + A(fv® fv) = foPv: A[1]T> — k, is written
explicitly as

an+bn(1—V77)f1V+ Z fi1V®fi2VZ
11+i2=n
= > [fal=vp) @@ fi,(1 - vp)lbev: A[1]°" - k.

W14 tip=n

Cancelling the first and the third summands as well as summands that contain v only at
the end, we obtain the valid equation

Z fuv® fi,v=— Z [(favn @ [iy)bav + (fi, ® [i,v0)bav + (fi,V & fi, V)0V ].
11+i2=n 11+i2=n

The identity morphism f = (id,0) is mapped to the identity morphism Bar f = (id, 0).
Let us verify that Bar agrees with the composition. If h = fg in UCCAlg, hi = fig1,
ho = go + fog1, then h = fg. In fact, the equation

Z (?11 ®Tz’2 ®“'®7ik)§k :En

114+ ig=n

has the only non-vanishing realization f19, = hi. Furthermore, Bary f + (Bar;, f) - Bargg =
Barg h since fv + fgv = hv: A[1]T> — k. In fact, in arity n the left hand side is

fav + fo(L = vn)g1v + 00090V = (fug1 + dn090)V = hyv.
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The functor Bar: UCCAlg — CACoalg (the bar-construction) is described.

2.2. Cobar-construction. Let us construct a functor Cobar: CACoalg — UCCAlg, the
cobar-construction. Let C' = (C,(&1)n>0,€, W) be a strict-counit-complemented curved
Ano-coalgebra. The shift C[—1] of the k-submodule C' = Kere C C is the image of an idem-
potent 1 —e-w: C[—1] — C[—1], which we write as the projection pr = 1 —¢-w: C[—1] —
C[—1]. Define Cobar C' as C[—1]T7 equipped with the multiplication m$°** ¢ in the tensor
algebra, the unit n°**¢ = iny: k = C[-1]T° — C[-1]T>, the splitting v°°P*¢ = pr,:
C[-1]T? — C[-1]T° = k, the degree 1 derivation m{°*»¢ = ¢&: C[-1|T> — C[-1]T>
given by its components ¢, = (C[-1] —— C[-1] LN Cl-1]®n P C[-1]®"), n >0, and
a degree 2 element
m§P"C = —w@w — Z wé, € C[-1]T>.
n=0

For general curved A.-coalgebra C' the element m§°**¢ does not belong to C[-1]T7,
however, if C is a curved augmented coalgebra, then it does. Conilpotency of C is not
needed for existence of Cobar C. Let us verify necessary identities.

If n # 2, then £, = §n|€[71]. Furthermore, &, = §2|€[71] (1 —ew)® (1 —ew)] =
52}5[_1] +1®w —w ® 1. Extension of this map satisfies

LE=6[(l-ew)@(1l—ew)]=&L+1W-—Ww®1—¢e(wdw): C[—1] = C[-1]%2. (10)

Both sides of the equation (m{°*& )% = (m{°ParC @1 —1@m§Par ) ymSebarc are derivations.
It is equivalent to its restriction to generators C[—1].

Y (170,17 = (m§P ), ©1-1@ (m§ ), : C[~1] — C[-1]*". (11)
r+k+t=n

Let us prove (11) for (m§P* %), = —w @ w — w& = 0, (m§°*= %), | = —w&,_; if n # 3.
In fact, (11) is obvious for n = 0. It says for n = 1 that

G+6E105H+6H®1) =(1ow-wal)(1®&H+&®1) = (W) —&EW+&W — (W) =0

as it has to be. If n = 2 or n > 4, then the left hand side of (11) is

6 +6E1@1+106 )+ -+ Y, 1906L01%+... =
r4+24+t=n

=(1ow-we1)(§ 1®1+10& 1)+

o Y (1T ewel 1" ew@ %) = —¢_ @ W+ 1@ WE,_i—
r+2+t=n
W1 @1 —WRE + (1P ow —we 12D = 1@ wé,_ — W& ® 1,

as claimed. If n = 3, then the left hand side of (11) is

§&6+6H(EO1+1RE)+ - = (L+H1ow—woD[(L-wol)@1+18 (L+ 1o w)]—-
—£6ER1+1086) =10 (Wa+wow) — (Wo+weow)®1 =0,

as claimed.
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The expression m§°** CmebarC ig a well-defined element of C[—1]77. Its n-th component
is

mg T Cm T pr, = W @ WE +WE @ W= ) WEh(1T 96 8 1%) =

r+k+t=n
——w® Wgn_l + Wgn—l QW — W1 Z (1®(r+1) QWRI 1w ® 1®(1+t)) _
r+2+t=n
= —wowé, | +WE,_  Ow—wE (1% ow—we180D), (12)

If n # 3, then &, | = &,—1 and the obtained expression is equivalent to
—WROWE, 1 +WE 1 QW —WE, 1 QWA+ WRWE, 1 =0.
If n = 3, then (12) is equivalent to
—wRwloaw-wel)+wleow-wel)|egw=weww(-1—-1+1+1)=0.

Thus m§P#Cmebar = (. We obtain a map Ob CACoalg — Ob UCCAlg.

Let us describe the functor Cobar: CACoalg — UCCAIg on morphisms. It takes a mor-
phism g = (g1,90): C — D to the morphism Cobarg = f = (f;,f,): C[-1]T> — D[-1]T>,
where the algebra homomorphism Cobar; g = f; = 7 is specified by its components

7 =g = (C[-1] = C[-1] -2~ D[-1] -2 D[-1)),
90 = 6o = (C[-1] = C[-1] 2> k), (13)

- - SETE —
and the degree 1 element is Cobary g = fy = (k — C[—1] —— D[-1]T> LRI [—1]T7),
which we write as wg extending the notation. This element has the only non-vanishing
component fog = (]k =, Cl-1] LA ]k) = wgp. In fact,

for = (k —— C[-1] 2 D[-1] -2 D[-1]) = wg, Pr = 0.
Thus,

Cobarg g = fo = (k —— C[—1] —2 k <™ D[-1]T7),
Cobarg:i:(kLCi)k):g. (14)

Let us check that f is indeed a morphism of UCCAlg. It is required that 7+ (gafy—fi®
g)ms = £g. The second term vanishes, but this form of equation is easier to deal with. All
terms of this equation are g-derivations. Hence, the equation is equivalent to its restriction

to C[—1]: g€+ (G @ fo — fo @ G)my = £g: C[—1] — D[~1]T7, which means that for all n > 0

glén + (gn ® Wgo + gnfl ® W31 ﬁ_wgo ® gn — W3Ji ﬁ®§n71)m2 -
= Z gk(gil ®G;, ® - ®7,,): C[~1] = D[-1]*".

i1 tip=n
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When written explicitly,

91(1 — ew)&, D" +(gn DI @WGo + g1 P2 Y @wgy PT —

~Wo ® g T =W PE®Gu 1 DI Nmy = > &ilgy, ® -+ @ g, ) DI +
114 +ig=n
+ Z 9i, @ WGiy, — Wi, ®glz> pre: C[ 1] — E[_l}@lv
11+ia=n

it becomes obvious.
Another equation must hold,

—W R W — WE — WG — (WG ® WG)my = —W§ @ W§ — wak§®k: k — D[-1]T~.
k>0

After cancelling two summands and changing the sign the equation is written as

0n2W @ W+ WE +WGE, = > W&(G, ®F, ® - ®7,): k= D[-1]*"
14 Fip=n

Explicitly:

O oW @ W + W&, + wgi (1 — €W)En = Z WEk(gi, ® i, ® -+ @ Gy, pren.
i1+ tig=n

Cancelling wgi€,, against the right hand side we come to the valid equation &, ,w @ W +
wé, — wé, = 0: k — D[—1]®". In fact, £, = &, for n # 2 and the equation is obvious. For
n =2 we have by (10) w@w+wé —wé —w(leow)+w(w® 1) +we(w@w) =0.
The identity morphism g = (id, 0) is mapped to the identity morphism Cobar g = (id, 0).
Let us verify that Cobar agrees with the composition. If h = (C ENSIEN E) in CACoalg,
hi = figi, ho = fo + figo, then (Cobar, f) - Cobar; g = fg = h = Cobar, h. In fact, the

equation

> Fu@, ®7,® - ®7,) = hy: Cl=1] = E[-1]*"

i1+-+ip=n
for n = 1 holds due to flg1 Si(l —ew)g1Pr = f1g:1 DT = hy PT = hy: C’[ 1] — E[—1], and
for n = 0 it holds due to fo + f19o = fo+ fi(1 —eW)go = fo + figo = ho el ] — k.

_ Furthermore, Cobarg g + (Cobarg f) - Cobar; g = Cobarg h since wg + ng — wh: k —
E[—1]T~7. In fact, the n-th component of the left hand side is

Wi, + Y WG, ®7,® - ®7,) k= E[-1]"",
i1+ tip=n

which for n = 1 transforms to wg, +wfig, =wg, +wfi(l—ew)g, = wfigi Pt = why: k —
E[—1], and for n = 0 equals

WGy + W[+ WGy = wgo + Wfo+wfi(l—ew)gy =w(fo+ figo) PT = Who.
The functor Cobar: CACoalg — UCCAlg (the cobar-construction) is described.

3. Adjunction. We are showing that the two (bar and cobar) constructions are functors,
adjoint to each other. The adjunction bijection will be the top row of the following diagram.
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The two middle rows are natural transformations defined so that the two lower squares
commute.

UCCAlg(C[-1|T?,A) - ---------mm- -~ — CACoalg(C, A[1]T7)
gr-alg(C[-1]T7, A) x gr(k[—1], k) ——— gr-nuCoalg(C, A[1]T7) x gr(C,k[1])
gr(Cl-1], A) x gr(k[—1], k) 5 gx(C A1) x gr(C K1)

gr(C[-1),4) x gr(C-1],k) x gr(k[-1],k) - gr(C, A[1]) x gr(C, k[1]) x gr(k, k[1])

Notice that the set of morphisms of augmented graded coalgebras C' — A[1]T~ is in bijection
with the set of morphisms of graded non-counital coalgebras gr-nuCoalg(C, A[1]T>). The
functor X — XT” = @®,-0X®" has the structure of a comonad and T~-coalgebras are
precisely conilpotent non-counital coalgebras (|1, Section 6.7]). Since C is conilpotent, the
arrow - pry @id is a bijection by the well known lemma on Kleisli categories (generalized
to multicategories in [1, Lemma 5.3]). Thus the second horizontal map is a bijection as well.
Morphisms f: C[-1]T> — A € UCCAlg and g: C — A[1]T> € CACoalg are related as the
following diagram shows. It consists of elements (morphisms of degree 0) of vertices of the
previous diagram. For instance, gl = g, = (f, pr)[1] = f![1], etc. Equivalently,

o ipr=g0 " C— A, (15a)
O'_I'EV = g0|6 : U — k, (15b)
f=wg k—k, (15¢)

where all components are listed in

fi > g

l 1

(fi,0f) —— (81, 800)

I | (16)

(f,of) —— (&1, 800)

I l

v . 1 .
(fl pr, flva O-i) |—[_]> (gb go |60-7 WgOU)

We are going to show that systems of equations on pairs (f1,o f) and (g1, goo) saying that
these pairs are morphisms of UCCAlg and CACoalg are equivalent. In fact, these systems

are
fimf = m§PrCf . O[-1] = A, md = m§P*f,: k — A, (17)

5?@1 +52C(g0®1—1®g0)g1 = gl(ﬂ%arA: Cc = A[ ], §g—§?g0—5§(g0®go> = gl(s[l)%arA: C = k.
(18)
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Note that the image of any coderivation C' — C' is contained in C' = Kere. In more detailed
equations (17) and (18) read

ﬂmf = 5077 -+ €1F1 —+ EQ(FI (29 ﬂ)m?: U[—l] — A, mgl = —W&)’f]A — ng{:li k — A, (19)
. . _ . _ __ =C,. . _ —
0781+ 05 (g0 ® 1 — 1 ® go)g1 = b3 PT 4 + DT £1b7 PT4 + DT 05 (81 @ §1)bs Dry: C — All],
. __ =C,. .
6§ — 0%g0 — 05 (g0 ® go) = —Cbyv — Pig E1b'V — DT 0, (&1 @ &1)bsv: C — k. (20)

Let us rewrite systems (19) and (20) splitting each equation in two accordingly to splitting
the target A or the source C' in two summands

fim pry = &F pra +6,(FL @ f1)ms pry: C[—1] — A, (21a)

ﬂmfv =&+ &ifiv + EZ(E ® ﬂ)mQAv: Ol-1] = k, (21b)

mypry = —wé i pra: k — A, (21c)

miv = —wé& — w&fiv: k — k, (21d)

5081 + 65 (g0 @ 1 — 10 go)g1 = &1b7 PTa +0y (& © §1)b5 pry: C — A[l], (22a)
5 — 680 — Sg(go ® g) = —gibi'v — 55(@1 ®81)byv: C =k, (22b)

wolg) = b pry: k — Al], (22¢)

wio§ —wo¥gy = —biv: k — k. (22d)

We claim that equations (21x) and (22x) are equivalent for x € {a,b,c,d}. In fact, let us
rewrite the equations once again in the same order replacing m and ¢ with their definitions
and composing with ¢~ wherever appropriate:

o Hoblto T pTy ot f BT, Fo i (Flo @ fio)bso T pT, = 0: C — A, (23a)
o foblo v+ o7 + o tgfiv 4 01, (flo @ flo)blo v =0: C — k, (23b)
bolo ' pr, +wEfipT, =00 k — A, (23c¢)

bilo v 4+ wé + wéifiv=0: k — k. (23d)

In transforming (22a) use that 65 (goR1—1®g) = 6 (Pt @Pr) (g @1 —1®g): C — C
actually takes values in C', see (7). The second system is

_ . _1=C .
o lﬁlcagla Lig 152 (08 R0+ 0 ® 0go)g10 Ly

+g1 b pry o + 071520(0@1 ®og )b prao L =0: C = A, (24a)
o715 + 0 ¢Cogy + 07U, (080 @ ogo) + Eabiiv+

o€ (08 @ og)bdv = 0: C — K, (24b)

wo ' ¢Cog 07 F b pTao =0k — A, (24c)

wo S +wo el ogy +biv = 0: k — k. (24d)

According to our system of notation o pr = pro. We shall use that f; = f; pr A —i—ﬂvn.
Substituting relations (15a) and (15b) into the above equations we find that the latter are
pairwise equivalent.
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In fact, (23c) is equivalent to (24c) and (23d) is equivalent to (24d). Equivalence of (23a)
and (24a) follows from the identity

o1&y (frvn @ i BT, +1 DT @fivn)mg BTy = 07 u(080]o @ 0+ 0 @ ogofe)gio
Equivalence of (23b) and (24b) follows from the identity

o1&, [(Fu BTy +havn) @ (F BT, +Hiv)lmav =
= O'_IEQC(O'gO ® ogo) + a—léf(ogl ® og)bso v C =k,

which can be expanded to

0_1520(‘?1 DT 4 ®fyv + frvy @ f1 Pry +fivy @ frvp)miv = U_lgzc(agofé ®ogls): C — k.
The latter equation follows from the obvious one a‘lfg(ﬂv ®fiv) = U‘lgg(agob@) o8ole):
C — k. Hence, the bijection

UCCAlIg(C[-1]T7, A) = CACoalg(C, A[1]T7) (25)

is constructed.
Theorem 1. The functors Cobar: CACoalg < UCCAlg: Bar are adjoint to each other.

Proof. We have to prove naturality of bijection (25) with respect to A and C. The bijection
takes

(flv i) = (?1 p_rAu FIVA7 O-i) 'L (O_lFl ﬁA g, U_IFIVAga ig) = (gla g0|50-7 ngO') = (gl’ gUU)a
(26)
. — —~ 3§ —(k
Wherve g = (8ole,wgo) = (O'_l'FlVA,i)i C =Caok = k, g = A(C g?k = Aé)
(o7 pry0)%F: C — A[1]%%) k > 0.
Naturality of (25) with respect to A means that for each h: A — B € UCCAlg

UCCAlg(C[-1]T7, A) — CACoalg(C, A[1]T7)
UCCAIg(1,h l = J/CAcoalg(c,Barh) (27)
UCCAIg(C[-1]T7, B) — CACoalg(C, B[1]T7)

The left-bottom path takes (fi, f) to

(fihi, f+h) = (ﬂhlﬁ&ﬂhw&a(i—f—ﬁ))
IL (0_1F1h1 prpo, a_lflhlvBa, (i—i— h)O’) — (ql, q()O'),
where
gq: = Zg) . (U_1F1h1 ﬁB O')®kl 6 — E[l]@)k, Jo = (O'_I'Flh1VB,i+h)i C= 6@ k — k.
The top bijection takes (fi, f) to (26) and the right morphism takes it to (g1 - Bary h, (go +
(ec @ g1) Barg h)a). We have
g 7@k k), —1x — 7wk _ AR 1 o7 \®F —
g1 -Bar h = A ~hy = AL (07 i DT40h)" = An (07 1 (1 —vn)hio prg)*" =
—(k 1% _
— A% (07 hy pry o) = qi: C — B[1]%*
go + g1 Bargh = o Hiva+o Y pr pryohyvg =0~ flhlvB =qo: C —k
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due to obvious identity v4 + pr4 hyvg = hyvg: A — k. Furthermore,
wgo + (w,0)(ec D g1)Bargh = f +hovp=f +h=wqo: k = k

due to computation hgvg = hgvg = hngvp = h. Therefore, equation (27) is proven.
Naturality of (25) with respect to C' means that for each j: C — D € CACoalg

UCCAIlg(D[-1]TZ, A) = CACoalg(D, A[1]T7)
UCCAIg(Cobar j,A l = J{CACoalg(j,l) (28)
UCCAIlg(C[-1]T?, A) = CACoalg(C, A[1]T7)

The left-bottom path takes (fi, f) to
((Cobar, j) - fi, Cobar j + f) (j1F1 BT 4, jo + jifiva, o(Cobar j + 1))

1 1. R o _ . . F .
AL (07 i f PE 0,07 (o + jifiva)a, (Cobar j + f)a) = (1, roo),

which takes into an account that ((Cobary j)-f;)" = jona+jifi: C[—1] — A. The top bijection
takes (f1, f) to (g1, go0) from (26) and the right morphism takes it to (jig1, (jo +j180)c). This
coincides with (ry,rgo). In fact,

. k), 1% —k), _1.% __ - =
j1g1 :hA;)(U ', pT 4 a)®k = A(C)<O' LifipTy 0)®k =r:C— A[1]®k

jo +i180 = 0 Yo +j1o v = o (jo + jifiva) = ro: C — k,
Wcjo + Weji80 = Wejo +wpgo = Cobarj + f = wrg: k — k.

Therefore equation (28) holds and the theorem is proven. O

Notice that both sides of (15¢) do not appear in the equations at all. One may assume
that the components of morphisms of curved algebras and coalgebras belonging to k! are
all 0. Then one gets subcategories uccAlg C UCCAlg and caCoalg C CACoalg with smaller
sets of morphisms.

Definition 13. Objects of the category uccAlg are unit-complemented curved algebras and
morphisms are graded algebra homomorphisms f: A — B such that fm? = mi'f, m& = m{'f.
The composition and the identity morphisms are inherited from gr-alg.

Definition 14. Objects of the category caCoalg are curved augmented coalgebras and
morphisms g: C' — D are pairs (g, &) consisting of a homomorphism of augmented graded
coalgebras g;: C'— D and a k-linear map gj,: C' — k of degree 1 such that

51g1—|—prc(5 (8o ® g1 — g1®g6)=g16?:0—>5,
56 — 6, — Bt 0y (g @ g)) = g10P: C — k.

The composition h: C' — E of morphisms f: C' — D and g: D — F is given by h; = fg,
hi, = f, + fig{. The unit morphism is (id, 0).
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Notice that there is a functor Bar: uccAlg — caCoalg, making the diagram of functors

uccAlg RN caCoalg

UCCAlg 2% CACoalg

commute on the nose. In view of (8_) Bar takes a morphism f: A — B € uccAlg to the
strict coalgebra morphism Bar; f = f,T77: A[1]T> — B[1]T7, and the degree 1 functional
is Bary f = (A[1]T™ P ANl — A LN B[1] — k). The restriction of (9) to k
vanishes.

Also there is a functor Cobar: caCoalg — uccAlg, making commutative the diagram of
functors

caCoalg _Cobar, uccAlg

| =

Cobar

CACoalg 2% UCCAlg

It takes a morphism g = (gi,g,): C — D € caCoalg to the algebra homomorphism
Cobarg: C[-1]T? — D[-1]T?, specified by its components g, = ¢|: C[—1] — D[-1],
gbh: C[—1] — k, which coincides with (13). If g = 0, then Cobar g given by (14) vanishes as
well. Since equations (17), (18) distinguishing morphisms in diagram (16) do not involve f,
g, we have the following consequence. B

Corollary 1 (to Theorem 1). The functors Cobar: caCoalg < uccAlg: Bar are adjoint to
each other.

Now let us describe the full subcategories of the above categories.

Definition 15. A unit-complemented dg-algebra is a unit-complemented curved algebra
(A, mg, mq,0,n,v) with mg = 0. Equivalently, it is a dg-algebra (A, mo, my1,n) with a degree 0
map v: A — k (splitting of the unit) such that 7 - v = 1. Morphisms of such algebras are
morphisms of dg-algebras. Their full subcategory is denoted ucdgAlg C uccAlg.

Definition 16. Augmented curved coalgebras are defined as curved augmented coalgebras
(C, 65,01, 00, &, w) with

The full subcategory of such coalgebras is denoted acCoalg C caCoalg.

L. Positselski (|5]) formulates equations (29) as (w,0): k — C being a morphism in
caCoalg. Clearly, Cobar(Ob acCoalg) C ObucdgAlg.

Proposition 1. The functor Bar restricts to a functor Bar: ucdgAlg — acCoalg, which
has a left adjoint. The adjunction is Cobar: acCoalg < ucdgAlg: Bar.

Proof. We have to prove that Bar(ObucdgAlg) C ObacCoalg. This follows from two re-
marks. First, wBarAgbar4 = (k <= A[1]T> LN AQ)T?) = 0 since

(=l

k>0
= Y., (1 @b @1%: A — AQjSte).
+k—4c=

v

Second, wB A4 = — (k <0 AT b, All] » k) = 0 since by = 0. O
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4.1. Twisting cochains. Let us consider a unit-complemented curved algebra A and
a curved augmented coalgebra C. A morphism f € uccAlg(C[-1]T7, A) is identified
with a degree 0 map f;: C'[—1] — A which satisfies equations (19). Equivalently, the degree 1

map 6: C' — A satisfies the equations

wh=0:k— A, (30a)
Omst + 6,0 = son* +emf — 620 @ O)mE: C — A. (30b)

In fact, each solution of (30a) has the form 6 = (C e, o o, O[-1] SN A) for
a unique f;. Restricting (30b) to C' gives the top equation from (19), while restricting to the
image of w: k — C' gives the bottom equation from (19).

Definition 17. The degree 1 map 6: C' — A that satisfies (30) is called a twisting cochain.

The set Tw(C, A) = {twisting cochains #: C' — A} is in bijection with the homomorphi-
sm sets

uccAlg(C[—1]T7, A) =— Tw(C, A) —— caCoalg(C, A[1]T7),
s proo = 0 (0] 0lov) = (81.8)).

When A is a unit-complemented dg-algebra and C' is an augmented curved coalgebra
the notion of a twisting cochain simplifies to a degree 1 map #: C' — A which satisfies the
equation Omi' + 6,0 = don?t — 02(pre @ Pre ) (0 @ O)ms: C — A,

4.2. Conclusion. The results of the paper indicate that a dual notion to differential graded
algebra is the augmented curved coalgebra, and not a differential graded coalgebra as one
might think a priori.
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