Infinite dimensional linear groups with a spacious family of $G$-invariant subspaces

Author A. V. Sadovnichenko
sadovnichenko.lit@rambler.ru
Oles Honchar Dnipropetrovsk National University

Abstract Let $F$ be a field, $A$ be a vector space over $F$, $GL (F, A)$ be the group of all automorphisms of the vector space $A$. If $B \leq A$ then denote by $\mathop{\rm Core}_G (B)$ the largest $G$-invariant subspace of $B$. A subspace $B$ is called almost $G$-invariant if $\mathop{\rm dim}_F (B/\mathop{\rm Core}_G (B))$ is finite. In this paper we described the {case where} every subspace of $A$ is almost $G$-invariant.
Keywords vector space; linear group; module; $G$-invariant subspace; almost invariant subspace
Reference
1. Dixon M.R., Kurdachenko L.A., Otal J. Linear groups with bounded action// Algebra Colloquium – 2011. V.18, Ή3. – P. 487–498.

2. Dixon M.R., Kurdachenko L.A., Otal J. Linear groups with finite dimensional orbits// Ischia Group Theory 2010, Proceedings of the conference in Group Theory, World Scientific. – 2012. – P. 131–145.

3. Kegel O.H., Wehrfritz B.A.F. Locally finite groups. – North-Holland: Amsterdam, 1973.

4. Kurdachenko L.A. On some infinite dimensional linear groups// Note di Matematica – 2010. – V.30, Ή1. – P. 21–36.

5. Kurdachenko L.A., Sadovnichenko A.V., Subbotin I.Ya. On some infinite dimensional linear groups// Central European Journal of Mathematics. – 2009. – V.7, Ή2. – P. 178–185.

6. Kurdachenko L.A., Sadovnichenko A.V., Subbotin I.Ya. Infinite dimensional linear groups with a large family of G-invariant subspaces// Commentationes Mathematicae Universitatis Carolinae. – 2010. – V.51, Ή4. – P. 551–558.

7. Phillips R. Finitary linear groups: a survey. ”Finite and locally finite groups”// NATO ASI ser. C 471 – Dordrecht, Kluver. – 1995. – P. 111–146.

8. Wehrfritz B.A.F. Infinite linear groups. – Springer: Berlin, 1973.
Pages 11-15
Volume 40
Issue 1
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML