Processing math: 43%

Infinite dimensional linear groups with a spacious family of G-invariant subspaces

Author A. V. Sadovnichenko
sadovnichenko.lit@rambler.ru
Oles Honchar Dnipropetrovsk National University

Abstract Let F be a field, A be a vector space over F, GL(F,A) be the group of all automorphisms of the vector space A. If BA then denote by Core the largest G-invariant subspace of B. A subspace B is called almost G-invariant if \mathop{\rm dim}_F (B/\mathop{\rm Core}_G (B)) is finite. In this paper we described the {case where} every subspace of A is almost G-invariant.
Keywords vector space; linear group; module; G-invariant subspace; almost invariant subspace
Reference
1. Dixon M.R., Kurdachenko L.A., Otal J. Linear groups with bounded action// Algebra Colloquium – 2011. V.18, №3. – P. 487–498.

2. Dixon M.R., Kurdachenko L.A., Otal J. Linear groups with finite dimensional orbits// Ischia Group Theory 2010, Proceedings of the conference in Group Theory, World Scientific. – 2012. – P. 131–145.

3. Kegel O.H., Wehrfritz B.A.F. Locally finite groups. – North-Holland: Amsterdam, 1973.

4. Kurdachenko L.A. On some infinite dimensional linear groups// Note di Matematica – 2010. – V.30, №1. – P. 21–36.

5. Kurdachenko L.A., Sadovnichenko A.V., Subbotin I.Ya. On some infinite dimensional linear groups// Central European Journal of Mathematics. – 2009. – V.7, №2. – P. 178–185.

6. Kurdachenko L.A., Sadovnichenko A.V., Subbotin I.Ya. Infinite dimensional linear groups with a large family of G-invariant subspaces// Commentationes Mathematicae Universitatis Carolinae. – 2010. – V.51, №4. – P. 551–558.

7. Phillips R. Finitary linear groups: a survey. ”Finite and locally finite groups”// NATO ASI ser. C 471 – Dordrecht, Kluver. – 1995. – P. 111–146.

8. Wehrfritz B.A.F. Infinite linear groups. – Springer: Berlin, 1973.
Pages 11-15
Volume 40
Issue 1
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML