Wiman type inequalities for entire Dirichlet series with arbitrary exponents

Author A. O. Kuryliak, I. Ye. Ovchar, O. B. Skaskiv
iovchar@hotmail.com; kurylyak88@gmail.com, matstud@franko.lviv.ua
Ivano-Frankivsk National Technical University of Oil and Gas; Lviv Ivan Franko National University

Abstract We prove analogues of the classical Wiman inequality for entire Dirichlet series $f(z)=\sum_{n=0}^{+\infty}a_ne^{z\lambda_n}$ with arbitrary positive exponents $(\lambda_n)$ such that $\sup\{\lambda_n\colon n\geq 0 \}=+\infty$.
Keywords entire Dirichlet series; Wiman's inequality
Reference
1. Valiron G. Fonctions analytiques. – Paris: Press. Univer. de France, 1954.

2. H. Wittich, Neuere Untersuchungen uber eindeutige analytische Funktionen. – Berlin-Gottingen- Heidelberg: Springer, 1955. – 164 s.

3. Goldberg A.A., Levin B.Ja., Ostrovski I.V. Entire and meromorphic functions// Itogi nauky i techn., VINITI. – 1990. – V.85. – P. 5–186. (in Russian)

4. Sheremeta M.N. The Wiman-Valiron method for entire functions given by Dirichlet series// Dokl. Akad Nauk SSSR. – 1978. – V.240, ¹5. – P. 1036–1039 (in Russian). English transl. in Sov. Math., Dokl. – 1978. – V.19. – P. 726–730.

5. Skaskiv O.B. On the classical Wiman inequality for entire Dirichlet series// Visn. L’viv. Univ, Ser Mekh.-Mat. – 1999. – V.54. – P. 180–182. (in Ukrainian)

6. Sheremeta M.N. On a property of the entire Dirichlet series with decreasing coefficients// Ukr. Mat. Zhurn. – 1993. – V.45, ¹6. – P. 843–853 (in Ukrainian). English transl. in Ukr. Math. J. – 1993. – V.45, ¹6. – P. 929–942.

7. Skaskiv O.B. On the minimum of the absolute value of the sum for a Dirichlet series with bounded sequence of exponents// Mat. zametki. – 1994. – V.56, ¹5. – P. 117–128 (in Russian). English transl. in Math. Not. – 1994. – V.56, ¹5. – P. 1177–1184.

8. Skaskiv O.B., Stasyuk Ya.Z. On the equivalence of the sum and the maximal term of the Dirichlet series with monotonous coefficients// Mat. Stud. – 2009. – V.31, ¹1. – P. 7–46.

9. Skaskiv O.B., Stasyuk Ya.Z. On the equivalence of the sum and the maximal term of the Dirichlet series absolutely convergent in the half-plane// Carpat. Mat. Publ. – 2009. – V.1, ¹1. – P. 100–106.

10. Ovchar I., Skaskiv O. On the Borel type theorem for entire Dirichlet series with nonmonotonous exponents// Visn. L’viv. Univ, Ser Mekh.-Mat. – 2010. – V.72. – P. 232–242. (in Ukrainian)

11. Sheremeta M.M. Entire Dirichlet series. – Kyiv: ISDO, 1993. – 168 p. (in Ukrainian)
Pages 108-112
Volume 40
Issue 1
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML