Decomposition of finitely generated projective modules over Bezout ring | |
Author | |
Abstract | |
Keywords | |
Reference |
1. Henriksen M. Some remarks on elementary divisor rings// Michigan Math. J. – 1955-1956. – V.3. – P. 159–163. 2. Kaplansky I. Elementary divisors and modules// Trans. Amer. Math. Soc. – 1949. – P. 464–491. 3. Larsen M., Levis W., Shores T. Elementary divisor rings and finitely presented modules// Trans. Amer. Math. Soc. – 1974. – V.187. – P. 231–248. 4. Wiegand R., Wiegand S. Finitely generated modules over Bezout rings// Pacific. J. Math. – 1975. – V.582. – P. 455–664. 5. Bourbaki N. Elements de mathematique, Fasc. XXXVII. Algebre commutative, chap.1:Modules plats, Actulites Sci. Indust., Herman, Paris. – 1961. 6. Zabavsky B. Reduction of matrices over Bezout rings of stable rank not higher than 2// Ukrainian Math. J. – V.55, №4. – 2003. – P. 665–670. 7. Steger A. Diagonability of idempotent matrices// Pacific J. Math. – 1966. – V.193. – P. 535–542. 8. Zabavsky B., Bilavska S. Zero adequate ring is an exchange ring// Fund. Prikl. Math. – 2011(2012). – V.17, №3. – P. 61–66. 9. McGovern W. Personal communication, 2011. 10. Rosenberg J. Algebraic K-theory and its Application, Springer, Berlin, GTM 147. – 1995. 11. Warfield R.B. Exchange rings and decomposition of modules// Ann. Math. – 1972. – V.35. – P. 31–36. 12. Puninski G., Rothmaler P. When every finite generated flat module is projective// J. Algebra. – 2004. – V.277. – P. 542–558. 13. Jondrup S. Rings in which pure ideals are generated by idempotents// Math. Scand. 30x. – 1972. – P. 177–185. 14. Facctini A., Faith O. FP–injective rings and elementary divisor rings commutative rings theory// Proc. Int. Conf. – 1966. – V.185. – P. 293–302. 15. Zabavsky B.V. Fractionaly regular Bezout rings// Mat. Stud. – 2009. – V.32, №1. – P. 76–80. 16. Gillman L., Henriksen M. Rings of continuous function in which every finitely generated ideal is principal// Trans. Amer. Math. Soc. – 1956. – V.82. – P. 366–394. 17. McGovern W., Puninski G., Rothmaler P. When every projective module is a direct sum of a finitely generated modules// J. Algebra. – 2007. – V.31. – P. 454–481. |
Pages | |
Volume | 40 |
Issue | 1 |
Year | 2013 |
Journal | Matematychni Studii |
Full text of paper | |
Table of content of issue | HTML |