Decomposition of finitely generated projective modules over Bezout ring

Author B. V. Zabavsky, S. ². Bilavska
b_zabava@ukr.net, zosia_meliss@yahoo.co.uk
Ivan Franko National University of Lviv; Institute of Enterprise and Advanced Technologies, National University Lviv Polytechnic

Abstract It is shown that a commutative Bezout ring $R$ of stable range 2 is an elementary divisor ring if and only if for each ideal $I$ every finitely generated projective $R/I$-module is a direct sum of principal ideals generated by idempotents.
Keywords finitely generated module; canonical form; fractionally regular; principal ideal; semi-cancellative ring; Bezout ring
Reference
1. Henriksen M. Some remarks on elementary divisor rings// Michigan Math. J. – 1955-1956. – V.3. – P. 159–163.

2. Kaplansky I. Elementary divisors and modules// Trans. Amer. Math. Soc. – 1949. – P. 464–491.

3. Larsen M., Levis W., Shores T. Elementary divisor rings and finitely presented modules// Trans. Amer. Math. Soc. – 1974. – V.187. – P. 231–248.

4. Wiegand R., Wiegand S. Finitely generated modules over Bezout rings// Pacific. J. Math. – 1975. – V.582. – P. 455–664.

5. Bourbaki N. Elements de mathematique, Fasc. XXXVII. Algebre commutative, chap.1:Modules plats, Actulites Sci. Indust., Herman, Paris. – 1961.

6. Zabavsky B. Reduction of matrices over Bezout rings of stable rank not higher than 2// Ukrainian Math. J. – V.55, Ή4. – 2003. – P. 665–670.

7. Steger A. Diagonability of idempotent matrices// Pacific J. Math. – 1966. – V.193. – P. 535–542.

8. Zabavsky B., Bilavska S. Zero adequate ring is an exchange ring// Fund. Prikl. Math. – 2011(2012). – V.17, Ή3. – P. 61–66.

9. McGovern W. Personal communication, 2011.

10. Rosenberg J. Algebraic K-theory and its Application, Springer, Berlin, GTM 147. – 1995.

11. Warfield R.B. Exchange rings and decomposition of modules// Ann. Math. – 1972. – V.35. – P. 31–36.

12. Puninski G., Rothmaler P. When every finite generated flat module is projective// J. Algebra. – 2004. – V.277. – P. 542–558.

13. Jondrup S. Rings in which pure ideals are generated by idempotents// Math. Scand. 30x. – 1972. – P. 177–185.

14. Facctini A., Faith O. FP–injective rings and elementary divisor rings commutative rings theory// Proc. Int. Conf. – 1966. – V.185. – P. 293–302.

15. Zabavsky B.V. Fractionaly regular Bezout rings// Mat. Stud. – 2009. – V.32, Ή1. – P. 76–80.

16. Gillman L., Henriksen M. Rings of continuous function in which every finitely generated ideal is principal// Trans. Amer. Math. Soc. – 1956. – V.82. – P. 366–394.

17. McGovern W., Puninski G., Rothmaler P. When every projective module is a direct sum of a finitely generated modules// J. Algebra. – 2007. – V.31. – P. 454–481.
Pages 104-107
Volume 40
Issue 1
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML