Topological classification of the hyperspaces of polyhedral convex sets in normed spaces

Author I. V. Hetman
Ivan Franko National University of Lviv

Abstract We prove that, for a normed space $X$ of dimension $\dim(X)\ge 2$ the space $\mathrm{PConv}_H(X)$ of non-empty polyhedral convex subsets of $X$ endowed with the Hausdorff metric is homeomorphic to the topological sum $\{0\}\oplus |X^*|\times (\mathbb R\oplus (\mathbb R\times\bar{\mathbb{R}}_+)\oplus l_2^f)$, where the cardinal $|X^*|$ is endowed with the discrete topology.
Keywords hyperspace; polyhedral convex set
Reference 1. T. Banakh, I. Hetman, A “hidden” characterization of approximatevely polyhedral convex sets in Banach spaces, Studia Math., 210 (2012), 137–157.

2. T. Banakh, I. Hetman, K. Sakai, Topology of the hyperspace of closed convex subsets of a Banach space, available at:

3. T. Banakh, T. Radul, M. Zarichnyi, Adsorbing sets in infinite-dimensional manifolds. – VNTL Publ., Lviv, 1996.

4. L. Bazylevych, D. Repovs, M. Zarichnyi, Hyperspace of convex compacta of nonmetrizable compact convex subspaces of locally convex spaces, Topology Appl., 155 (2008), Ή8, 764–772.

5. G. Beer, Topologies on closed and closed convex sets. – Kluwer Academic Publ. Group, Dordrecht, 1993.

6. D.W. Curtis, R.M. Schori, Hyperspaces of Peano continua are Hilbert cubes, Fund. Math., 101 (1978), .1, 19–38.

7. T. Dobrowolski, The compact Z-set property in convex sets, Topology Appl., 23 (1986), Ή2, 163–172.

8. J. Gallier, Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations, book in progress available at:

9. A. Granero, M. Jimenez, J. Moreno, Convex sets in Banach spaces and a problem of Rolewicz, Studia Math., 129 (1998), Ή1, 19–29.

10. A. Illanes, S. Nadler, Hyperspaces, Marcel Dekker, Inc., New York, 1999.

11. S. Nadler, J. Quinn, N.M. Stavrakas, Hyperspaces of compact convex sets, Pacific J. Math., 83 (1979), 441–462.

12. K. Sakai, The spaces of compact convex sets and bounded closed convex sets in a Banach space, Houston J. Math., 34 (2008), Ή1, 289–300.

13. K. Sakai, M. Yaguchi, The AR-property of the spaces of closed convex sets, Colloq. Math., 106 (2006), Ή1, 15–24.

14. K. Sakai, Z. Yang, The spaces of closed convex sets in Euclidean spaces with the Fell topology, Bull. Pol. Acad. Sci. Math., 55 (2007), Ή2, 139–143.

15. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. – Cambridge Univ. Press, 1993.

16. R. Schori, J. West, The hyperspace of the closed unit interval is a Hilbert cube, Trans. Amer. Math. Soc., 213 (1975), 217–235.

17. A. Teleiko, M. Zarichnyi, Categorical topology of compact Hausdorff spaces. – VNTL Publ., Lviv, 1999.

18. M.M. Zarichnyi, S. Ivanov, Hyperspaces of convex compact subsets of the Tychonoff cube, Ukrainian Math. J., 53 (2001), Ή5, 809–813.

19. G. Ziegler, Lectures on polytopes, Springer-Verlag, New York, 1995.

Pages 203-211
Volume 39
Issue 2
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML