Approximation of functions from generalized Nikol’skii– Besov classes by entire functions in Lebesgue spaces(in Ukrainian)

Author V. V. Myroniuk, S. Ya. Yanchenko
VetalMyronjuk@ukr.net, Sergiy.Yan@rambler.ru
Iíñòèòóò ìàòåìàòèêè ÍÀÍ Óêðà¿íè

Abstract Exact-order estimates for the approximations of functions of classes $S^{\Omega}_{p,{\theta}}B(\mathbb{R}^d)$ by entire functions with the spectrum of a special form in the space $L_q(\mathbb{R}^d)$ for some relations between the parameters $p$ and $q$, are established.
Keywords approximation; functional class; entire function
Reference 1. Stasyuk S.A., Yanchenko S.Ya. The best Approximation of classes $B^{\Omega}_{p,\theta}$ of function of many variables in the space $L_p(\mathbb{R}^d)$// Zb. Pr. Inst. Mat. NAN Ukr. – 2008. – V.5, ¹1. – P. 367–384. (in Ukrainian)

2. Yanchenko S.Ya. Approximation of classes $B^{\Omega}_{p,\theta}$ of function of many variables by entire functions in the space $L_q(\mathbb{R}^d)$// Ukr. Mat. Zh. – 2010. – V.62, ¹1. – P. 123–135. (in Ukrainian)

3. Bari N.K., Steckin S.B. Best approximations and differential properties of two conjugate functions// Trudy Moskov. Mat. Obsc. – 1956. – V.5. – P. 483–522. (in Russian)

4. Amanov T.I. Representation and embedding theorems for the function spaces $S^{(r)}_{p,\theta}B(\mathbb{R}_n)$ and $S^{(r)_*}_{p,\theta}B$ ${(0\leqslant x_j\leqslant 2\pi, j=1,...,n)}$// Trudy Mat. Inst. Steklov. – 1965. – V.77. – P. 5–34. (in Russian)

5. Nikol’skii S.M. Functions with dominant mixed derivative, satisfying a multiple Holder condition// Sibirsk. Mat. Zh. – 1963. – V.4, ¹6. – P. 1342–1364. (in Russian)

6. Lizorkin P.I. Generalized Liouville differentiation and the multiplier method in the theory of embeddings of classes of differentiable functions// Trudy Mat. Inst. Steklov. – 1969. – V.105. – P. 89–167. (in Russian)

7. Vladimirov V.S. The equations of mathematical physics. – M.: Nauka, 1967, 436 p. (in Russian)

8. Lizorkin P.I., Nikol’skii S.M. Function spaces of mixed smoothness from the decomposition point of view// Trudy Mat. Inst. Steklov. – 1989. – V.187. – P. 143–161. (in Russian)

9. Heping W., Yongsheng S. Approximation of multivariate functions with a certain mixed smoothness by entire functions// Northeast. Math. J. – 1995. – V.11, ¹4. – P. 454–466.

10. Yanchenko S.Ya. Approximation of the classes $S^{r}_{p,\theta}B(\mathbb{R}^d)$ of functions of many variables by entire functions of a special form// Ukr. Mat. Zh. – 2010. – V.62, ¹8. – P. 1124–1138. (in Ukrainian)

11. Romanyuk A.S. Approximation of classes of periodic functions of several variables// Mat. Zametki. – 2002. – V.71, ¹1. – P. 109–121. (in Russian)

12. Stasyuk S.A. The best orthogonal trigonometric approximations of classes of periodic functions of several variables $B^{\Omega}_{p,\theta}$// Work Inst. Mat. NAN Ukr. – 2002. – V.35. – P. 195–208. (in Ukrainian)

13. Nikol’skii S.M. Approximation of function of several variables and imbedding theorems. – M.: Nauka, 1969, 480 p. (in Russian)

14. Temlyakov V.N. Approximation of functions with bounded mixed derivative// Trudy Mat. Inst. Steklov. – 1986. – V.178. – P. 1–112. (in Russian)

15. Besov O.V., Il’in V.P., Nikol’skii S.M. Integral representations of functions and embedding theorems. – M.: Nauka, 1996, 480 p.

16. Yanchenko S.Ya. Order estimates of approximation characteristics of classes of functions defined on Rd// Zb. Pr. Inst. Mat. NAN Ukr. – 2011. – V.8, ¹1. – P. 244–262. (in Ukrainian)

Pages 190-202
Volume 39
Issue 2
Year 2013
Journal Matematychni Studii
Full text of paper PDF
Table of content of issue HTML